S. Görtz and W. D. Bugbee, Allografts in articular cartilage repair, J Bone Joint Surg Am, vol.88, p.16764096, 2006.

F. Langer and A. E. Gross, Immunogenicity of allograft articular cartilage, J Bone Joint Surg Am, vol.56, p.4452688, 1974.

J. Malejczyk, A. Osiecka, A. Hyc, and S. Moskalewski, Effect of immunosuppression on rejection of cartilage formed by transplanted allogeneic rib chondrocytes in mice, Clin Orthop Relat Res, vol.269, pp.266-273, 1991.

B. Rahfoth, J. Weisser, F. Sternkopf, T. Aigner, V. Der-mark et al., Brä uer R. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits, Osteoarthritis Cartilage, vol.6, p.9616439, 1998.

N. Kawabe and M. Yoshinao, The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants, Clin Orthop Relat Res, vol.268, pp.279-293, 1991.

R. E. Schreiber, B. M. Ilten-kirby, N. S. Dunkelman, K. T. Symons, L. M. Rekettye et al., Repair of osteochondral defects with allogeneic tissue engineered cartilage implants, Clin Orthop Relat Res, vol.367, pp.382-395, 1999.

P. Lan, N. Tonomura, A. Shimizu, S. Wang, and Y. G. Yang, Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation, Blood, vol.108, p.16410443, 2006.

N. Legrand, A. Ploss, R. Balling, P. D. Becker, C. Borsotti et al., Humanized mice for modeling human infectious disease: challenges, progress, and outlook, Cell Host Microbe, vol.6, p.19616761, 2009.

N. Legrand, K. Weijer, and H. Spits, Experimental models to study development and function of the human immune system in vivo, J Immunol, vol.176, p.16455958, 2006.

N. Tonomura, A. Shimizu, S. Wang, K. Yamada, V. Tchipashvili et al., Pig islet xenograft rejection in a mouse model with an established human immune system, Xenotransplantation, vol.15, p.18447886, 2008.

R. M. Wang, T. D. Johnson, J. He, Z. Rong, M. Wong et al., Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials, Biomaterials, vol.129, p.28334641, 2017.

B. Zhang, Z. Duan, and Y. Zhao, Mouse models with human immunity and their application in biomedical research, J Cell Mol Med, vol.13, p.18419795, 2009.

L. D. Shultz, Y. Saito, Y. Najima, S. Tanaka, T. Ochi et al., Generation of functional human Tcell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma (null) humanized mice, Proc Natl Acad Sci U S A, vol.107, p.20615947, 2010.

E. Pé-rès, E. Bagdassarian, S. This, J. Villaudy, D. Rigal et al., From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis, Viruses, vol.7, pp.6371-6386, 2015.

A. Hautier, V. Salentey, E. Aubert-foucher, C. Bougault, G. Beauchef et al., Bone morphogenetic protein-2 stimulates chondrogenic expression in human nasal chondrocytes expanded in vitro, Growth Factors, vol.26, p.18720162, 2008.

S. Claus, N. Mayer, E. Aubert-foucher, H. Chajra, E. Perrier-groult et al., Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular Hu-mice and cartilage implants biocompatibility, Tissue Eng. Part C Methods, vol.18, p.21933021, 2012.

C. Bougault, A. Paumier, E. Aubert-foucher, and F. Mallein-gerin, Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression, BMC Biotechnol, vol.8, p.71, 2008.

C. Bougault, A. Paumier, E. Aubert-foucher, and F. Mallein-gerin, Investigating conversion of mechanical force into biochemical signaling in three-dimensional chondrocyte cultures, Nat. Protoc, vol.4, p.19478808, 2009.

L. Guellec, D. Mallein-gerin, F. Treilleux, I. Bonaventure, J. Peysson et al., Localization of the expression of type I, II and III collagen genes in human normal and hypochondrogenesis cartilage canals, Histochem J, vol.26, p.7843983, 1994.

E. Perrier-groult, M. Pasdeloup, M. Malbouyres, P. Galéra, and F. Mallein-gerin, Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage, Tissue Eng Part C Methods, vol.19, p.23311625, 2013.

F. Percher, C. Curis, E. Pérès, M. Artesi, N. Rosewick et al., HTLV-1-induced leukotriene B4 secretion by T cells promotes T cell recruitment and virus propagation, Nat Commun, vol.8, p.15890, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01545491

A. Cachat, J. Villaudy, D. Rigal, L. Gazzolo, and D. Dodon, Mice are not Men and yet. . . how humanized mice inform us about human infectious diseases, M. Med Sci, vol.28, issue.1, pp.63-71, 2012.

N. Mayer, S. Lopa, G. Talò, A. B. Lovati, M. Pasdeloup et al., Interstitial Perfusion Culture with Specific Soluble Factors Inhibits Type I Collagen Production from Human Osteoarthritic Chondrocytes in Clinical-Grade Collagen Sponges, PLoS One, vol.11, p.27584727, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02132052

L. D. Shultz, M. A. Brehm, S. Bavari, and D. L. Greiner, Humanized mice as a preclinical tool for infectious disease and biomedical research, Ann. N Y Acad Sci, vol.1245, p.22211979, 2011.

K. Anselme, C. Bacques, G. Charriere, D. J. Hartmann, D. Herbage et al., Tissue reaction to subcutaneous implantation of a collagen sponge. A histological, ultrastructural, and immunological study, J Biomed Mater Res, vol.24, p.2193933, 1990.
URL : https://hal.archives-ouvertes.fr/hal-00313341

M. Chvapil, T. A. Chvapil, and J. A. Owen, Reaction of various skin wounds in the rat to collagen sponge dressing, J Surg Res, vol.41, p.3773500, 1986.

R. F. Oliver, H. Barker, A. Cooke, and R. A. Grant, Dermal collagen implants. Biomaterials, vol.3, p.7066465, 1982.

J. Narayanan, J. Y. Xiong, and X. Y. Liu, Determination of agarose gel pore size: Absorbance measurements vis a vis other techniques, Journal of Physics: Conference Series, vol.28, pp.83-86, 2006.

A. Pluen, P. A. Netti, R. K. Jain, and D. A. Berk, Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations, Biophys J, vol.77, pp.542-552, 1999.

A. K. Abbas, A. H. Lichtman, S. Pillai, D. L. Baker, and A. Baker, Cellular and molecular immunology, 2018.

F. Krombach, S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr et al., Cell size of alveolar macrophages: an interspecies comparison, Environ Health Perspect, vol.105, p.9400735, 1997.

M. Cegielski, I. Izykowska, M. Podhorska-okolow, M. Zabel, and P. Dziegiel, Development of foreign body giant cells in response to implantation of Spongostan as a scaffold for cartilage tissue engineering, In Vivo, vol.22, p.18468404, 2008.

N. Brooks, A foreign body granuloma produced by an injectable collagen implant at a test site, J Dermatol Surg Oncol, vol.8, p.7037891, 1982.

S. Satsuma, R. A. Scudamore, T. D. Cooke, W. P. Aston, and R. Saura, Toxicity of complement for chondrocytes. A possible source of cartilage degradation in inflammatory arthritis, Rheumatol Int, vol.13, p.8356393, 1993.

L. E. Freed, D. A. Grande, Z. Lingbin, J. Emmanual, J. C. Marquis et al., Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds, J Biomed Mater Res, vol.28, p.7983087, 1994.

E. Fragonas, M. Valente, M. Pozzi-mucelli, R. Toffanin, R. Rizzo et al., Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate, Biomaterials, vol.21, p.10721748, 2000.

S. Wakitani, T. Goto, R. G. Young, J. M. Mansour, V. M. Goldberg et al., Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel, Tissue Eng, vol.4, p.9916174, 1998.

K. Von-der-mark, V. Gauss, H. Mark, and P. Muller, Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture, Nature, vol.267, p.559947, 1977.

A. Dufour, M. Buffier, D. Vertu-ciolino, F. Disant, F. Mallein-gerin et al., Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes, J Biomed Mater Res A, vol.107, issue.4, p.30650239, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02132030

J. Van-susante, J. Pieper, P. Buma, T. H. Van-kuppevelt, H. Van-beuningen et al., Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro, Biomaterials, vol.22, p.11511033, 2001.

A. Stellavato, V. Tirino, F. De-novellis, D. Vecchia, A. Cinquegrani et al., Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes, J Cell Biochem, vol.117, p.27018169, 2016.

T. Noguchi, M. Oka, M. Fujino, M. Neo, and T. Yamamuro, Repair of osteochondral defects with grafts of cultured chondrocytes. Comparison of allografts and isografts, Clin Orthop Relat Res, vol.302, pp.251-258, 1994.

C. Shangkai, T. Naohide, Y. Koji, H. Yasuji, N. Masaaki et al., Transplantation of allogeneic chondrocytes cultured in fibroin sponge and stirring chamber to promote cartilage regeneration, Tissue Eng, vol.13, p.17518599, 2007.

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N Engl J Med, vol.331, p.8078550, 1994.

A. K. Dewan, M. A. Gibson, J. H. Elisseeff, and M. E. Trice, Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques, Biomed Res Int, p.25210707, 2014.

T. A. Selmi, P. Verdonk, P. Chambat, F. Dubrana, J. F. Potel et al., Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years, J Bone Joint Surg Br, vol.90, p.18450625, 2008.

Y. S. Kim, Y. J. Choi, D. S. Suh, D. B. Heo, Y. I. Kim et al., Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold?, Am J Sports Med, vol.43, p.25349263, 2015.

Y. G. Koh, O. Kwon, Y. S. Kim, Y. J. Choi, and D. H. Tak, Adipose-Derived Mesenchymal Stem Cells With Microfracture Versus Microfracture Alone: 2-Year Follow-up of a Prospective Randomized Trial, Arthroscopy, vol.32, p.26585585, 2016.

B. Sharma, C. G. Williams, M. Khan, P. Manson, and J. H. Elisseeff, In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel, Plast Reconstr Surg, vol.119, p.17255664, 2007.

E. Osti, Skin ph variations from the acute phase to re-epithelialization in burn patients treated with new materials (burnshield, semipermeable adhesive film, dermasilk, and hyalomatrix), Ann Burns Fire Disasters, vol.21, p.21991115, 2008.

C. Vinatier, O. Gauthier, A. Fatimi, C. Merceron, M. Masson et al., An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects, Biotechnol Bioeng, vol.102, p.18949749, 2009.

C. Vinatier, D. Magne, A. Moreau, O. Gauthier, O. Malard et al., Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel, J Biomed Mater Res A, vol.80, p.16958048, 2007.

A. Stellavato, L. Noce, M. Corsuto, L. Pirozzi, A. et al., Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling, Cell Physiol Biochem, vol.44, p.29179206, 2017.

N. Mohan, P. V. Mohanan, A. Sabareeswaran, and P. Nair, Chitosan-hyaluronic acid hydrogel for cartilage repair, Int J Biol Macromol, vol.104, p.28359897, 2017.

A. D'agostino, A. Stellavato, T. Busico, A. Papa, V. Tirino et al., In vitro analysis of the effects on wound healing of high-and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes, BMC Cell Biol, vol.16, p.26163378, 2015.

D. Ollitrault, F. Legendre, C. Drougard, M. Briand, H. Benateau et al., BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes, Tissue Eng Part C Methods, vol.21, p.24957638, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01804715

P. Neybecker, C. Henrionnet, E. Pape, D. Mainard, L. Galois et al., In vitro and in vivo potentialities for cartilage repair from human advanced knee osteoarthritis synovial fluid-derived mesenchymal stem cells, Stem Cell Res Ther, vol.9, p.30486903, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02021124

X. He, H. Lu, N. Kawazoe, T. Tateishi, and G. Chen, A novel cylinder-type poly(L-lactic acid)-collagen hybrid sponge for cartilage tissue engineering, Tissue Eng Part C Methods, vol.16, p.19580420, 2010.