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SUMMARY

Faithful DNA replication is essential for the mainte-
nance of genome integrity. Incomplete genome repli-
cation leads to DNA breaks and chromosomal rear-
rangements, which are causal factors in cancer and
other human diseases. Despite their importance,
the molecular mechanisms that control human
genome stability are incompletely understood.
Here, we report a pathway that is required for human
genome replication and stability. This pathway has
three components: an E3 ubiquitin ligase, a tran-
scriptional repressor, and a replication protein. The
E3 ubiquitin ligase RBBP6 ubiquitinates and destabi-
lizes the transcriptional repressor ZBTB38. This
repressor negatively regulates transcription and
levels of the MCM10 replication factor on chromatin.
Cells lacking RBBP6 experience reduced replication
fork progression and increased damage at common
fragile sites due to ZBTB38 accumulation and
MCM10 downregulation. Our results uncover a
pathway that ensures genome-wide DNA replication
and chromosomal stability.

INTRODUCTION

Genomic instability underlies numerous human developmental

disorders and diseases (Aguilera and Gómez-González, 2008).

Its role has been particularly clearly shown in cancer, where

genome instability contributes to both the appearance and het-

erogeneity of cancer (Burrell et al., 2013). Genome instability

can arise from dysfunction in several surveillance and repair

pathways, and DNA replication is a period during which the
genome is especially vulnerable. Among the regions that are

highly sensitive to replication abnormalities are common fragile

sites (CFSs).

CFSs are regions of the genome that are especially sensitive to

DNA replication stress and are likely to break under such condi-

tions. A majority of cancer-related translocations contain break-

points within CFSs, andmany genes that have been identified as

tumor suppressors or oncogenes are located at or within CFSs

(Debatisse et al., 2012; Le Tallec et al., 2013; Ozeri-Galai et al.,

2012), strongly arguing that CFS fragility contributes causally

to cancer. For this reason and others, large research efforts

have been directed toward understanding the biology of CFSs

(Fungtammasan et al., 2012; Helmrich et al., 2011; Letessier

et al., 2011). These investigations have led to the identification

of a handful of DNA replication and DNA repair factors that influ-

ence CFS stability (Bergoglio et al., 2013; Koundrioukoff et al.,

2013; Lukas et al., 2011; Naim et al., 2013; Ying et al., 2013).

However, our understanding of CFS fragility is still far from

complete.

In this study, we identify and characterize an essential

pathway that opposes replication stress and CFS rearrange-

ment. The upstream member of this pathway is the E3 ubiquitin

ligase RBBP6. RBBP6 (also known as PACT or P2P-R) is an

essential gene (Li et al., 2007) that encodes a protein that inter-

acts with Rb, p53, and the pre-mRNA 30 processing complex

(Sakai et al., 1995; Shi et al., 2009; Simons et al., 1997), and

whose expression is deregulated in human tumors (Chen

et al., 2013; Mbita et al., 2012; Motadi et al., 2011; Yoshitake

et al., 2004). Our experiments establish that RBBP6 regulates

genomic replication and CFS stability, as in its absence DNA

replication slows down and CFSs become lost from the

genome. We show that RBBP6 fulfills this function by ubiquiti-

nating a transcription factor, ZBTB38, and by promoting its

degradation. Finally, we establish that the replication protein

MCM10 is a direct target of transcriptional repression by
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ZBTB38, and that its downregulation is responsible for the repli-

cation abnormalities that occur in the absence of RBBP6. These

data further our understanding of genome stability and DNA

replication, and provide evidence of a crucial role for the

RBBP6/ZBTB38/MCM10 axis in genome perpetuation and

stability.

RESULTS

Cells Lacking RBBP6 Experience Spontaneous DNA
Damage
RBBP6 is an essential protein (Li et al., 2007) and is deregulated

in cancer. This led us to investigate its function in mammalian

cells. To that end, we depleted RBBP6 by RNAi in HeLa cells

and monitored the cells for biological consequences. This

phenotypic screening led us to observe that RBBP6-depleted

cells showed signs of DNA damage, as evidenced by high levels

of phospho-H2AX (or gH2AX), phosphorylated ATM, and phos-

phorylated Chk2 in western blots (Figure 1A). This effect was

obtained with two independent small interfering RNA (siRNA)

duplexes against RBBP6 (Figure S1A), it was rescued by the

expression of a siRNA-resistant RBBP6 construct (Figure S1B),

and it occurred in all of the other cell lines we tested (U2OS,

Rb-depleted U2OS, HCT116, and HCT116 p53�/�; Figures

S1C and S1D). To assess the percentage of cells in which dam-

age occurred, we used immunofluorescence. These experi-

ments showed that gH2AX foci were detectable in 39% of

RBBP6-depleted cells, but in only 4% of control HeLa cells

(Figure 1B). A similar proportion of these cells scored positively

for the two other DNA damage markers that we tested: 53BP1

and Phospho-S1524-BRCA1 (Figures 1C and S1E). Finally, the

effect of RBBP6 was not restricted to cancer cell lines, as the

depletion of RBBP6 caused the spontaneous appearance of

DNA damage in normal human fibroblasts as well (Figures 1D

and S1F). These data indicate that RBBP6 function is required

to prevent DNA damage.

DNA Damage Associated with RBBP6 Depletion Is
Prevented by Simultaneous Depletion of the
Transcriptional Repressor ZBTB38
We previously conducted a yeast two-hybrid screen to identify

possible interactors of RBBP6 (Chibi et al., 2008); therefore,

we tested whether any of these candidates was required for

the phenotypes seen upon RBBP6 knockdown. We found that

the RNAi depletion of ZBTB38 completely suppressed the

elevated levels of all DNA damage indicators (Figures 1A–1D)

that had been caused by RBBP6 knockdown, and this was

true both in cancer cells and in normal human fibroblasts. Impor-

tantly, by itself, ZBTB38 depletion had no detectable effect in

any of our tests (Figures 1A–1D). We considered the possibility

that rather than preventing DNA damage, ZBTB38 knockdown

might have merely prevented the activation of signaling path-

ways. To test this possibility, we submitted ZBTB38-depleted

cells to a challenge with the replication inhibitor Aphidicolin,

which causes DNA damage. We found that these cells had

levels of ATM and Chk2 phosphorylation identical to those

observed in control cells, which establishes that they are not

defective for DNA damage signaling (data not shown). There-
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fore, we conclude that the DNA damage that occurs upon

RBBP6 knockdown is fully prevented when ZBTB38 is simulta-

neously depleted. This strong genetic interaction suggests that

the two proteins function in the same pathway to prevent DNA

damage.

We next tested the involvement of other partners of RBBP6,

including p53, Rb, and the pre-mRNA processing complex

(Sakai et al., 1995; Shi et al., 2009; Simons et al., 1997). By west-

ern blotting, we observed that depletion of RBBP6 caused DNA

damage in cells inactivated for p53 (HCT116 versus HCT116

p53�/� cells; Figure S1D), in cells depleted for Rb (Figure S1D),

and in cells overexpressing RNase H1, which degrades RNA/

DNA duplexes produced by defective mRNA processing

(Figures S1G and S1H). These observations argue that the

primary cause of DNA damage in cells depleted of RBBP6 is

ZBTB38 dependent.

Cells Lacking RBBP6 Have Higher Levels of ZBTB38
Protein, and Overexpression of ZBTB38 Is Sufficient to
Induce DNA Damage
We next investigated the molecular link between ZBTB38 and

RBBP6. By western blotting, we observed an �3-fold increase

in the ZBTB38 protein level in HeLa cells depleted of RBBP6 rela-

tive to control cells (Figures 1A, 2A, and S2A). In contrast, ZBTB4

(a paralog of ZBTB38) and Rb (a potential RBBP6 interactor

(Simons et al., 1997)) were unaffected (Figures 2A and S2A). A

similar increase in the ZBTB38 protein level in cells treated

with RBBP6-specific siRNAs was observed in all of the other

cell lines we tested (3.4- to 5.4-fold increase in different cell

types; Figure 2B) and was also seen with an independent

ZBTB38 antibody (Figure S2A). We therefore conclude that in

the absence of RBBP6, ZBTB38 protein levels are higher in cells

and that this coincides with DNA damage.

This observation led us to speculate that the increase in

ZBTB38 expression might directly cause DNA damage. We

thus overexpressed ZBTB38 in HeLa and U2OS cells and moni-

tored DNA damage. By western blotting, we observed high

levels of gH2AX and phosphorylated Chk2 in both cell types

(Figure 2C). Thus, the overexpression of ZBTB38 is sufficient

to cause DNA damage and its depletion is sufficient to prevent

DNA damage in the absence of RBBP6. It is therefore highly

likely that the accumulation of ZBTB38 is the primary cause of

DNA damage in cells depleted of RBBP6.

RBBP6 Ubiquitinates the ZBTB38 Protein and Controls
its Stability
We investigated how RBBP6 regulates ZBTB38 abundance to

prevent DNA damage. The level of ZBTB38 mRNA was not

increased after RBBP6 knockdown (Figure S2B), arguing that

the upregulation was primarily posttranscriptional. RBBP6 con-

tains a RING finger domain (Kappo et al., 2012), which is often

associated with an E3 ubiquitin ligase activity and protein desta-

bilization. This led us to test whether RBBP6 was regulating

ZBTB38 protein stability. By performing coimmunoprecipitation

(coIP) on nuclear extracts, pull-down experiments, and a subnu-

clear recruitment assay, we first established that the two pro-

teins interact (Figure S3). We next measured the half-life of

endogenous ZBTB38 and found that it was greatly increased
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Figure 1. Depletion of RBBP6 Causes DNA Damage, which Is Rescued by Simultaneous ZBTB38 Depletion

(A) The depletion of RBBP6 by RNAi causes the appearance of phosphorylated histone H2AX and an increase of ATM and Chk2 phosphorylation, but not ATR or

Chk1 phosphorylation. This effect is prevented by the simultaneous depletion of ZBTB38. Extracts of cells transfected with the indicated siRNA duplexes were

used for western blotting. ‘‘P-’’ denotes the phosphorylated form of the different proteins assayed. Treatment with HU (2mM, 16 hr) was used as a positive control

of damage induction.

(B) Analysis of damage on a cell-by-cell basis. HeLa cells were transfected with the indicated siRNAs and fixed 48 hr after transfection. They were then processed

for immunofluorescencewith an antibody against gH2AX, and the nuclei were counterstainedwith DAPI. For quantification of (B)–(D), we scored 150 cells for each

condition in three independent experiments.

(C) The presence of 53BP1 or P-BRCA1 foci was scored as in (B).

(D) RBBP6 depletion causes DNA damage in normal human fibroblasts, and this is rescued by simultaneous ZBTB38 depletion. The same procedure as in (B) and

(C) was used, but the experiment was performed on MRC-5 cells. In all figures: *p < 0.05, **p < 0.01, ***p < 0.001; NS, no statistical significance.

See also Figure S1.
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B Figure 2. Depletion of RBBP6 Causes an In-

crease in the ZBTB38 Protein Level, and

Overexpression of ZBTB38 Is Sufficient to

Cause DNA Damage

(A) RBBP6 depletion does not affect ZBTB4 or Rb

abundance in HeLa cells, but increases the ZBTB38

protein level. HeLa cells were transfected with

siRNA duplexes targeting RBBP6 or with a scram-

bled control siRNA. Cell extracts were then used for

immunoblotting with the indicated antibodies.

Quantitation shows the ratio of signal relative to

tubulin (Tub.) for each indicated protein.

(B) Western blot analysis of ZBTB38 protein level in

the three indicated cell types transfected with con-

trol siRNA or with siRNA targeting RBBP6.

(C) Overexpression of ZBTB38 causes DNA dam-

age. HeLa cells or U2OS cells were transfected with

a plasmid encoding ZBTB38 and 48 hr later, cell

extracts were used for immunoblotting with the

indicated antibodies.

See also Figure S2.
(going from 4 hr to >12 hr) after RBBP6 knockdown (Figure 3A).

Therefore, the loss of endogenous RBBP6 after RNAi increased

ZBTB38 protein stability. Conversely, the overexpression of

RBBP6 led to a large decrease in the level of endogenous

ZBTB38 that was detectable by immunofluorescence, and this

effect was prevented by inhibiting the proteasome with MG132

(Figure 3B). The regulation was specific, as the overexpression

of RBBP6 did not detectably affect ZBTB4 (Figure 3B). Thus,

RBBP6 induces ZBTB38 protein degradation, and this depends

on the activity of the proteasome.

We next tested whether RBBP6 might directly ubiquitinate

ZBTB38. We showed that the knockdown of RBBP6 decreased
578 Cell Reports 7, 575–587, April 24, 2014 ª2014 The Authors
the amount of ubiquitinated ZBTB38 in

cells (Figure 3C). Conversely, the overex-

pression of RBBP6 led to ZBTB38 ubiquiti-

nation in cells (Figure 3D). This effect of

RBBP6 on ZBTB38 is also observed in

the absence ofMDM2 inmouse embryonic

p53�/� Mdm2�/� cells (data not shown)

and therefore is distinct from the mecha-

nism used to regulate p53 stability, which

is MDM2 dependent (Li et al., 2007).

Finally, we set up an in vitro reconsti-

tuted system. The E2 for RBBP6 is un-

known; however, the RING finger of

RBBP6 is structurally related to that of

Bmi1 and Ring1B (Kappo et al., 2012),

and UbcH5c functions an E2 ligase for

these proteins (Buchwald et al., 2006), so

we hypothesized it might do the same

for RBBP6. We found that RBBP6 drove

the ubiquitination of RFP-ZBTB38 in vitro

in the presence of UbcH5c, whereas a

DRING mutant of RBBP6 had no such ef-

fect (Figure 3E). Together, these data

show that RBBP6 functions as an E3
ligase to promote the ubiquitination and proteasomal degrada-

tion of ZBTB38.

Cells Lacking RBBP6 Show Increased Chromosomal
Instability and Evidence of Underreplication of the
Genome, which Is Rescued by Simultaneous
Codepletion of ZBTB38
We next monitored different aspects of DNA maintenance in the

RBBP6-depleted cells. We noticed that upon RBBP6 depletion,

a significant increase occurred in the level of DNA bridges and

PICH-positive bridges (Figures 4A and 4B) during anaphase.

These bridges are indicative of cells entering M phase with
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Figure 3. RBBP6 Decreases ZBTB38 Protein Stability and Abundance via Ubiquitination and Proteasomal Degradation

(A) Depletion of RBBP6 prolongs the half-life of endogenous ZBTB38 protein. HeLa cells were transfected with a siRNA duplex targeting RBBP6 or with a

scrambled control duplex (Ctrl). The cells were then treated with cycloheximide and extracts were collected at the indicated time intervals (in hours). The ratio of

ZBTB38 to tubulin signals in the samples is displayed, with the t = 0 time point set as 1.

(B) RBBP6 overexpression leads to proteasomal degradation of ZBTB38, but not ZBTB4. HeLa cells were transfected with an expression vector for Myc-RBBP6

and then subjected to immunofluorescence with the indicated antibodies. The arrows indicate the position of cells expressing Myc-tagged proteins. Scale bar,

25 mm.

(C) Endogenous RBBP6 controls the ubiquitination of ZBTB38. HeLa cells were transfectedwith a plasmid expressing hemagglutinin (HA)-tagged ubiquitin, along

with a siRNA targeting RBBP6 or a scrambled control siRNA. The cells were treated with MG132, and extracts were processed by IP and western blotting as

indicated. After RBBP6 knockdown, there was a decrease in the amount of ubiquitinated ZBTB38.

(D) RBBP6promotes the polyubiquitination of ZBTB38 in cells. HeLa cells were transfectedwith the indicated plasmid combinations and treatedwithMG132. Cell

extracts were processed by IP and western blotting (WB) as indicated. The overexpression of RBBP6 led to the appearance of ubiquitin conjugates on ZBTB38.

(E) RBBP6 promotes the polyubiquitination of ZBTB38 in vitro. RFP-ZBTB38 was immunoprecipitated from transfected cells and incubated with purified E1

(Uba1), HA-tagged ubiquitin, the E2 conjugating enzyme UbcH5C, and wild-type Myc-tagged RBBP6 (WT) or its RING-deleted derivative (DR) immunopre-

cipitated from transfected cells. The reaction products were probed by western blotting with an HA antibody to detect ubiquitin conjugates.

See also Figure S3.
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Figure 4. RBBP6 and ZBTB38 Control the Integrity and Stability of a CFS

(A) Cells depleted of RBBP6 frequently present DAPI bridges in anaphase. Quantification of the phenotype in HeLa cells transfected with the indicated siRNA

combinations, and the average and SD from 150 cells in each of three independent experiments are shown. Inset: a representative anaphase cell that scored

positive for the presence of a DAPI bridge (arrow).

(legend continued on next page)
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regions of the genome being incompletely replicated (Chan and

Hickson, 2009). CFSs are often found in these regions, and we

thus hypothesized that they could be affected by RBBP6 deple-

tion. By performing chromatin IP (ChIP) for gH2AX, we observed

that the FRA3B/FHIT locus, a CFS, indeed bore the mark of DNA

damage in RBBP6 knockdown cells (Figure 4C), whereas the two

control loci we examined did not. This establishes that RBBP6 is

necessary to prevent the occurrence of damage at the FRA3B/

FHIT locus. In addition, using a PCR-based assay, we observed

loss of the FRA3B sites in a population of HeLa cells depleted of

RBBP6 (Figure 4D). We next tested whether the genomic insta-

bility was specific to the FRA3B fragile site. In U2OS cells, we

observed increased breakage at the FRA3B and FRA16 fragile

sites upon RBBP6 depletion (Figure S4A), indicating that the ef-

fect of RBBP6 is not restricted to a single CFS or a single cell

type.

To gain more insight into the underlying mechanism, we also

investigated an artificial fragile region. It was recently reported

that LacOp arrays are prone to missegregation in the presence

of LacR, and this phenomenon is enhanced in conditions that

promote replication stress and fragile site breakage (Jacome

and Fernandez-Capetillo, 2011). We thus monitored the number

of LacR spots in mouse 3T3 cells harboring integrated LacOp ar-

rays (Soutoglou and Misteli, 2008), expressing a Cherry-LacR

fusion construct, and depleted of RBBP6. We observed an

increased number of cells with no LacR spots or more than

one spot, and conversely a diminution of the cells with a single

spot (Figures S4B and S4C). This reflects missegregation of

the LacOp repeats in the absence of RBBP6 and proves that

RBBP6 is essential for the stability of this artificial fragile region.

Altogether, these results indicate that RBBP6 is required for

chromosome stability and that inactivation of RBBP6 leads to

chromosomal breakage at genomic sites susceptible to replica-

tion stress, such as CFSs, in mouse and human cells.

We next investigated whether chromosomal instability was

also rescued by ZBTB38 depletion. Again the RNAi depletion

of ZBTB38 by itself had no detectable effect in any of these tests

(Figure 4). In striking contrast, the ZBTB38 knockdown sup-

pressed (1) the presence of anaphase bridges (Figures 4A and

4B), (2) the presence of damage at CFSs (Figure 4C), (3) the chro-

mosomal instability at CFSs (Figure 4D and S4A), and (4) themis-

segregation of LacOp arrays (Figure S4C). In summary, all of the

phenotypes seen upon RBBP6 knockdown are rescued if

ZBTB38 is simultaneously depleted.

RBBP6 Regulates Replication Fork Speed and
Interorigin Distance in a ZBTB38-Dependent Manner
The presence of underreplicated DNA in the absence of RBBP6

led us to investigate how RBBP6 regulates DNA replication and
(B) Cells depleted of RBBP6 frequently present PICH-covered bridges in anaphas

siRNA combinations, and the average and SD from 150 cells in each of three in

scored positive for the presence of a PICH bridge (arrow). PICH staining is repre

(C) RBBP6-depleted cells suffer DNA damage at the FRA3B/FHIT fragile site, and

with the indicated siRNAs and then the presence of gH2AX at the three indicate

(D) The FRA3B locus becomes underrepresented in a cell population after RBBP6

abundance of FRA3B and other loci along chromosome 3 was measured by q

Average and SD from two biological replicates, each with technical triplicates.

See also Figure S4.
how ZBTB38 accumulation perturbed this regulation. First, we

monitored the viability of RBBP6-depleted cells exposed to

low doses of hydroxyurea (HU), a replication inhibitor (Arlt

et al., 2011). These low doses were not toxic to control cells,

but killed 40% of the RBBP6 knockdown cells (Figure 5A). Treat-

ment with mitomycin C, another drug that impedes DNA replica-

tion (Sognier and Hittelman, 1986), was also much more toxic to

RBBP6-depleted than to control cells (Figure 5B). These exper-

iments show that cells lacking RBBP6 are hypersensitive to a

replication challenge.

We next investigated whether cells depleted of RBBP6 pre-

sent DNA replication stress. The defects that uncouple the heli-

case and polymerase activities of the replisome lead to the for-

mation of single-strand DNA, which can then be detectable by

bromodeoxyuridine (BrdU) staining in the absence of DNA dena-

turation (Koundrioukoff et al., 2013) and by the formation of

phospho-RPA32 foci (Sirbu et al., 2011). HU treatment caused

both marks to occur, whereas RBBP6 depletion did not trigger

either one (Figure S5A). Therefore, RBBP6 depletion does not

lead to the formation of detectable levels of single-strand DNA,

arguing that depletion of RBBP6 causes a mild replication defect

and/or that compensation mechanisms exist.

We directly tested the function of RBBP6 in DNA replication by

using DNA combing (Técher et al., 2013). RBBP6was silenced in

U2OS cells, and following 5-iodo deoxy uridine (IdU) and

5-chloro-20-deoxyuridine (CldU) pulses, we calculated the dis-

tances between replication origins (in origin clusters), fork veloc-

ities, and asymmetry. In cells treated with RBBP6 siRNA, we

observed a significant decrease in replication fork speed

compared with control (Figure 5C). We also observed that the in-

terorigin distance in clusters was significantly lower (Figure 5D).

In contrast, loss of RBBP6 in cells had no effect on replication

fork stalling and/or collapse, and there was no asymmetry in

fork progression (Figure S5B and data not shown). Thus, deple-

tion of RBBP6 causes a reduction in fork progression coincident

with endogenous replication stress and chromosomal instability.

However, interorigin distance also was reduced, which partially

compensated for the reduction in fork speed.

Again we investigated whether DNA replication defects were

rescued by ZBTB38 depletion. The RNAi depletion of ZBTB38

by itself had no detectable effect in any of these tests (Figures

5A–5D), but in striking contrast, the ZBTB38 knockdown sup-

pressed (1) the hypersensitivity to HU and Mitomycin C (Figures

5A and 5B), (2) the decreased speed of replication forks (Fig-

ure 5C), and (3) the decreased interorigin distance (Figure 5D).

In summary, all of the phenotypes seen uponRBBP6 knockdown

were rescued when ZBTB38 was simultaneously depleted.

We thus conclude from these experiments that RBBP6

regulates DNA replication. In the absence of RBBP6, ZBTB38
e. Quantification of the phenotype in HeLa cells transfected with the indicated

dependent experiments are shown. Inset: a representative anaphase cell that

sented in green, overlaid on the DAPI staining (blue).

this is suppressed by simultaneous ZBTB38 depletion. Cells were transfected

d loci was tested by ChIP.

depletion. After siRNA transfection, total genomic DNA was extracted and the

PCR. Internal standard: average of nine loci located on other chromosomes.
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B Figure 5. RBBP6 Regulates DNA Replication

in a ZBTB38-Dependent Manner

(A) RBBP6-depleted cells are hypersensitive to low

doses of HU. After transfection with the indicated

siRNAs, HeLa cells were treated with a low dose of

HU (200 mM for 16 hr) and then viability was as-

sessed by trypan blue exclusion.

(B) As in the previous panel, except that the cells

were treated with Mitomycin C (1 mg/ml for 12 hr).

(C) RBBP6 depletion reduces replication fork

speed. U2OS cells were transfected with the indi-

cated siRNAs for 48 hr and then labeled with IdU

(30 min) and CldU (30 min) and prepared for single-

molecule DNA fiber analysis. A representative DNA

fiber from control siRNA-treated cells is provided.

Left panel: distribution of replication fork velocities

in a representative experiment. A total of 150 repli-

cation forks were analyzed per condition and the

median speed value is indicated on top of each bar.

Right panel: the average of the median replication

fork velocity for each siRNA condition was calcu-

lated from three independent experiments (150

forks per condition were analyzed in each single

experiment).

(D) RBBP6 depletion reduces the interorigin dis-

tance (IOD) in replication origin clusters. A repre-

sentative DNA fiber from control siRNA-treated cells

is provided. Left panel: distribution of IODs in a

representative experiment. A total of 150 fibers were

analyzed per siRNA condition and the median value

is indicated on top of each bar. Right panel: the

average of the median IOD for each siRNA condition

was calculated in two independent experiments

(150 fibers were analyzed per siRNA condition).

See also Figure S5.
is overabundant, and this leads to an altered program of DNA

replication and chromosomal instability.

The Replication FactorMCM10 Is a Target of RBBP6 and
ZBTB38, andMediatesMost of the Effects of RBBP6 and
ZBTB38
We next wanted to identify the role of RBBP6 and ZBTB38 in

DNA replication regulation. By western blotting on chromatin

fractions, we examined the loading of different DNA repair and

replication factors onto the chromatin. We found that DNA dam-

age response factors (BRCA1 and TOPBP1) and gH2AX binding

onto the chromatin was strongly enhanced in the absence of

RBBP6, consistent with the presence of DNA damage in the cells

(Figure 6A). The amounts of prereplication complex components
582 Cell Reports 7, 575–587, April 24, 2014 ª2014 The Authors
(ORC2, MCM3, CDT1, and HBO1/KAT7)

associated with the chromatin were similar

in RBBP6-depleted and control cells

(Figure 6A), ruling out an effect of RBBP6

on prereplication complex (preRC)

loading. The amounts of the DNA replica-

tion clamp PCNA, the specialized DNA

polymerase POLH/XPV, and the mini-

chromosome maintenance subunit 7

(MCM7) associated with the chromatin
were similar in RBBP6-depleted and control cells (Figure 6A).

In contrast, we detected a significantly lower amount of

MCM10, a factor involved in DNA replication activation (Kanke

et al., 2012; van Deursen et al., 2012; Watase et al., 2012; Zhu

et al., 2007), in RBBP6-depleted cells compared with control

(Figure 6A). These observations indicate that the DNA replication

factor MCM10 is not properly associated with chromatin in cells

depleted of RBBP6. This effect is eliminated if ZBTB38 is

depleted along with RBBP6 (Figure 6A).

These results raised the possibility that decreased MCM10

abundance and/or loading was responsible for the phenotypes

observed in RBBP6-depleted cells. To test this possibility, we

depleted MCM10 by RNAi and repeated the functional assays

described above.We found that the depletion of MCM10 caused
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Figure 6. MCM10 Is Affected by RBBP6

Depletion, and Overexpression of MCM10

Rescues DNA Damage Caused by RBBP6

Depletion

(A) RBBP6 depletion coincides with lower amounts

of MCM10 protein loaded onto chromatin. HeLa

cells were transfected with the indicated siRNA

duplexes. Chromatin fractions (nuclease-resistant

fractions) were then prepared and the amount of the

indicated chromatin-bound nuclear factors was

analyzed by western blot.

(B) MCM10 reexpression suppresses DNA damage

in cells depleted of RBBP6. Design of the rescue

experiment with GFP-MCM10.

(C) Graph representing the percentage of cells that

exhibited phospho-BRCA1 foci in the different

siRNA conditions (n = 100 in each of 3 independent

experiments).

See also Figure S6.
spontaneous DNA damage (Figures S6A and S6B), ATM and

Chk2 activation (Figure S6A), hypersensitivity to HU and MMC

(Figure S6C), the appearance of frequent PICH-positive

anaphase bridges (Figure S6D), loss of FRA3B and FRA16 in

U2OS cells (Figure S6E), missegregation of LacO repeats (Fig-

ure S6F), and a significant reduction of DNA replication fork

speed and interorigin distance (Figure S6G). Therefore,

MCM10 depletion causes similar phenotypes as RBBP6 deple-

tion, arguing that it could be a relevant functional target.

To test this hypothesis experimentally, we set up a rescue

assay. In this experiment, we reintroduced expression plasmids

for tagged proteins in cells that had undergone siRNA depletion

of RBBP6. We then used immunofluorescence to assess

the presence of DNA damage in the transfected cells. Our

control experiment showed that, as expected, the reexpression

of RBBP6 rescued the effects of RBBP6 siRNA. Importantly,

we observed that the percentage of cells bearing P-BRCA1

foci after RBBP6 depletion was decreased 2-fold by simulta-

neous transfection of an MCM10 expression vector (Figures

6B and 6C). This phenotypic rescue establishes that MCM10

is an important target that links the loss of RBBP6 to DNA

damage.

The Replication Factor MCM10 Is a Transcriptional
Target of RBBP6 and ZBTB38
We next investigated how ZBTB38 stabilization in cells lacking

RBBP6 might affect MCM10 function. Since ZBTB38 is a tran-

scriptional repressor (Filion et al., 2006; Sasai et al., 2005), we

monitored the expression of MCM10 protein and mRNA (Figures

7A, 7B, and S7). In the three cell types tested, MCM10 was

repressed by RBBP6 knockdown at the protein andmRNA levels

(Figures 7A, 7B, and S7B). It was reexpressed upon simulta-

neous ZBTB38 knockdown (Figures 7A, 7B, and S7B). Other

replication factors used as controls did not show any such vari-

ation, ruling out indirect consequences of a possible cell-cycle

alteration caused by the knockdowns (Figures 7A, 7B, S7A,

and S7B).
Is the downregulation of MCM10 after RBBP6 depletion (and

the occurrence of damage) merely a response to activated

DNA damage signaling pathways? This is unlikely, as we

observed the downregulation even in the presence of caffeine

(Figure 7C) or KU55933 (data not shown), both of which block

DNA damage signaling. Thus, our data indicate that ZBTB38

accumulation repressesMCM10 transcription, causing a subse-

quent decrease in MCM10 protein level.

We then asked whether ZBTB38 directly repressed the

expression of MCM10. First, we used luciferase reporter con-

structs. In this assay, ZBTB38 repressed transcription from the

MCM10 promoter, but did not affect control promoters (Fig-

ure 7D). Second, we showed by ChIP that theMCM10 promoter

was bound by ZBTB38 in cells (Figure 7E). Third, we overex-

pressed ZBTB38 in HeLa cells and monitored endogenous

MCM10 mRNA and protein expression. We observed that

expression of ZBTB38 was sufficient to cause a decrease in

MCM10 mRNA and protein expression (Figures 7F and 7G)

These results establish a direct and causal link between

elevatedZBTB38 levels,MCM10downregulation, and theappear-

ance of DNA damage (model presented in Figures S7C–S7E).

DISCUSSION

We report that the human E3 ligase RBBP6 and the transcrip-

tional repressor ZBTB38 are essential for genome replication,

perpetuation, and stability. Previous work linked RBBP6 to p53

(Simons et al., 1997), but genetic evidence argued that it had

important targets aside from p53 (Li et al., 2007). Our experi-

ments identify the Zinc finger protein ZBTB38 as a key effector

of RBBP6. When RBBP6 is depleted, ZBTB38 accumulates (Fig-

ure 2), and this causes DNA damage, a reduction in DNA replica-

tion fork speed, CFS underreplication, and chromosome segre-

gation defects (Figures 1 and 4).We show that ZBTB38 is directly

ubiquitinated by RBBP6 in human and mouse cells, in a process

that is independent of p53 andMDM2, and leads to proteasomal

degradation (Figure 3). We identify an RBBP6 target in cells, as
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Figure 7. RBBP6 and ZBTB38 Regulate the Expression of Replication Factor MCM10

(A) The MCM10 protein is depleted following RBBP6 knockdown, but its level is normal if ZBTB38 is simultaneously removed. Other replication factors (e.g.,

MCM3, ORC2, CDT1, and PCNA) do not follow this trend. Extracts of cells transfected with the indicated siRNA duplexes were used for western blotting.

(legend continued on next page)
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well as a ZBTB38 regulator. We note that a proteome-wide study

identified lysines 112 and 804 of ZBTB38 as polyubiquitin

acceptor sites (Kim et al., 2011). This supports the idea that

ZBTB38 is regulated by ubiquitination, and raises the possibility

that these sites are targets of RBBP6.

We have also identified MCM10 as a key effector of the

RBBP6/ZBTB38 axis. Expression of MCM10 in RBBP6-depleted

cells prevents DNA damage (Figure 6), MCM10 depletion causes

similar phenotypes as RBBP6 depletion (Figure S6), and

elevated levels of ZBTB38 lead toMCM10 repression (Figure 7).

ZBTB38 is a bifunctional transcriptional repressor that can bind

methylated DNA as well as certain nonmethylated consensus

sites (Sasai et al., 2010). We believe the latter mode of binding

underlies the regulation of MCM10. First, ZBTB38 inhibits

the expression of a MCM10 luciferase reporter plasmid, which

is devoid of CpG methylation because of its bacterial origin

(Figure 7D). Second, the MCM10 promoter is a CpG island,

and these elements are generally methylation free in cells

(Figure 7E). Third, we found a potential nonmethylated ZBTB38

consensus motif, TGCCA, at �84 bp from the transcription start

site of MCM10. For these reasons, we believe the regulation of

MCM10 by ZBTB38 is methylation independent.

MCM10 is unequivocally required for DNA replication in eu-

karyotes (Kanke et al., 2012; van Deursen et al., 2012; Watase

et al., 2012; Zhu et al., 2007), yet its molecular roles are still a

matter of debate (Thu and Bielinsky, 2013). The phenotypes

we observe in the absence of RBBP6 or in the absence of

MCM10 are identical and characterized by slow replication

fork progression, decreased interorigin distance, and the pres-

ence of DNA damage. This occurs in the absence of detectable

RPA32 foci and ATR/Chk1 activation (Figures 1A and S5A).

These phenotypes are compatible with the proposed role of

MCM10 in promoting replication elongation (Thu and Bielinsky,

2013). The simplest model for cells lacking RBBP6 (or overex-

pressing ZBTB38) is that the lowered MCM10 level results in a

mildly defective DNA replication program in which slower repli-

cation forks fail to meet at certain sensitive chromosomal re-

gions. Such underreplicated loci do not necessarily cause

checkpoint activation, but can subsist through the G2 phase,

be converted to lesions during mitosis, and be incorporated

into 53BP1 foci to be repaired during the following G1 (Chan

and Hickson, 2009; Harrigan et al., 2011; Lukas et al., 2011).

The effects we observe upon RBBP6 depletion are all consistent

with such a scenario occurring in chromosomal regions that are

susceptible to replication stress, and in particular CFSs.
(B) Expression of MCM10, but not of other replication genes (i.e., MCM3 and oth

depletion, and normal after combined depletion. qRT-PCRwas performed onmRN

from three biological replicates, with normalization to b2 microglobulin).

(C) MCM10 depletion is not a consequence of DNA damage signaling. The same p

of caffeine, an inhibitor of ATM and ATR signaling.

(D) ZBTB38 represses the MCM10 promoter in a luciferase transfection assay.

(E) ZBTB38 directly binds the promoter region of MCM10. Left panel: schematic

endogenous ZBTB38 protein in HeLa cells (average and SD from three experiment

(F) ZBTB38 overexpression causes a transcriptional repression of MCM10, but

ZBTB38 expression plasmid. Expression levels were normalized to an internal co

(G) The overexpression of ZBTB38 is sufficient to induce MCM10 repression and

(Ctrl) or a ZBTB38 expression plasmid. Same extracts as used in Figure 2C.

See also Figure S7.
This simple model, of course, does not exclude other possible

roles of MCM10. We previously showed that simply decreasing

fork speed by 25% with low doses of HU was not sufficient to

generate DNA damage, at least in U2OS cells (Domı́nguez-Kelly

et al., 2011). Therefore, it is possible that in cells with low

MCM10, another molecular defect compounds the problems

caused by the slow replication speed. A possible candidate is

altered DNA repair. Indeed, accumulating evidence suggests

that MCM10 functions in DNA repair in association with TOPBP1

(Balestrini et al., 2010; Germann et al., 2011; Im et al., 2009; Ku-

magai et al., 2010; Tanaka et al., 2013; Taylor et al., 2011; Wa-

wrousek et al., 2010; Yoshida and Inoue, 2004). The importance

of efficient DNA repair for CFS stability is underlined by the fact

that many of the genetic alterations that are known to cause

breaks at CFS reportedly affect genes that code for DNA repair

factors such as POLeta (Bergoglio et al., 2013), BRCA2,

RAD51, TOPBP1, and TOP2A (Lukas et al., 2011). Irrespective

of whether MCM10 acts by regulating DNA replication, DNA

repair, or both, our data firmly place this molecule in an

RBBP6/ZBTB38/MCM10 axis that is critical for genome stability

in mammalian cells.

Because they are highly susceptible to spontaneous

breakage, CFSs are a major cause of genetic instability and

have been proposed to have a causal role in different types of

cancer (Debatisse et al., 2012). In this context, it is noteworthy

that both RBBP6 and ZBTB38 have been connected to cancer.

Polymorphisms in ZBTB38 are very tightly linked to the risk of

prostate cancer (Kote-Jarai et al., 2011). We speculate that this

might be due to the role of ZBTB38 in controlling replication

and genome stability via MCM10, and possibly by other genes

as well. RBBP6 is highly overexpressed in esophageal cancers

(Yoshitake et al., 2004), which are typically p53-negative malig-

nancies with high genetic instability. Based on our data, we hy-

pothesize that RBBP6 deregulation in cancer might contribute

to the observed genome instability, and that the effect of

RBBP6 in these tumors could be mediated, at least in part, by

its action on ZBTB38.

EXPERIMENTAL PROCEDURES

Plasmids

The plasmids used in this work are listed in Table S1.

ChIP and Quantitative PCR

After preclearing with protein A sepharose beads (Millipore) for 1 hr, the chro-

matin from an equivalent of 53 107 HeLa cells was used for IP with a ZBTB38
ers not shown), is decreased after RBBP6 depletion, increased after ZBTB38

As extracted from cells transfectedwith the indicated siRNAs (average and SD

rocedure as in (A) was used, but the experiment was performed in the presence

description of the genomic region assayed. Right panel: results of ChIP on the

s). Enrichment valueswere normalized to an internal control (the GAPDH locus).

not MCM3. qRT-PCR analysis in cells transfected with a control plasmid or a

ntrol (b2 microglobulin).

DNA damage. Western blot analysis of cells transfected with an empty plasmid
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antibody or immunoglobulin G as a control. After an overnight incubation at

4�C, the beads were washed, eluted in buffer E (25 mM Tris-HCl [pH 7.5],

5 mM EDTA, 0.5% SDS) and crosslinks were reversed at 65�C with proteinase

K for 6 hr. The DNA was then purified using the QIAquick PCR purification kit

(QIAGEN) and eluted in 100 ml distilled water. Enrichment for a specific DNA

sequence was calculated using the comparative Ct method as previously

described (Miotto and Struhl, 2008). PCR primer pairs are listed in Table S2.

Immunofluorescence

The cells were fixed for 10 min in 2% paraformaldehyde, permeabilized

with 0.5% Triton X-100 at 4�C, and processed for immunofluorescence as pre-

viously described (Yamada et al., 2009). When necessary, the cells were

treated with the proteasomal inhibitor MG132 at a 20 mM final concentration

overnight. Images were processed with ImageJ (http://rsbweb.nih.gov/ij/).

ERCC6L/PICH staining on anaphase cells was performed as previously

described (Rouzeau et al., 2012). The antibodies used in this work are listed

in Table S3.

DNA Combing Analysis

Molecular combing and immunodetection were performed as previously

described (Técher et al., 2013).

Gene Expression Analysis

mRNAwas isolated using the TRIZOL reagent (Invitrogen) according to a stan-

dard protocol. Reverse transcription was performed using the Superscript III

reverse transcriptase enzyme (Invitrogen) as recommended by the manufac-

turer. The primers used for quantitative PCR (qPCR) analysis are available in

the PrimerBank database (Spandidos et al., 2010).

Additional experimental procedures are available in Supplemental Experi-

mental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.03.030.
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