G. Egger, G. Liang, A. Aparicio, and P. A. Jones, Epigenetics in human disease and prospects for epigenetic therapy, Nature, vol.429, pp.457-63, 2004.

M. Esteller, Epigenetics provides a new generation of oncogenes and tumour-suppressor genes, Br J Cancer, vol.94, pp.179-83, 2006.

T. Jenuwein and C. D. Allis, Translating the histone code, Science, vol.293, pp.1074-80, 2001.

Y. Katan-khaykovich and K. Struhl, Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors, Genes Dev, vol.16, pp.743-52, 2002.

M. Taipale, S. Rea, and K. Richter, hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells, Mol Cell Biol, vol.25, pp.6798-810, 2005.

Y. Dou, T. A. Milne, and A. J. Tackett, Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF, Cell, vol.121, pp.873-85, 2005.

E. R. Smith, C. Cayrou, and R. Huang, A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16, Mol Cell Biol, vol.25, pp.9175-88, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02154288

A. Kimura, T. Umehara, and M. Horikoshi, Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing, Nat Genet, vol.32, pp.370-377, 2002.

N. Suka, K. Luo, and M. Grunstein, Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin, Nat Genet, vol.32, pp.378-83, 2002.

A. Akhtar and P. B. Becker, Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila, Mol Cell, vol.5, pp.367-75, 2000.

A. W. Thorne, D. Kmiciek, and K. Mitchelson, Patterns of histone acetylation, Eur J Biochem/FEBS, vol.193, pp.701-714, 1990.

B. M. Turner, L. P. O'neill, and I. M. Allan, Histone H4 acetylation in human cells. Frequency of acetylation at different sites defined by immunolabeling with site-specific antibodies, FEBS Lett, vol.253, pp.141-146, 1989.

K. Zhang, K. E. Williams, and L. Huang, Histone acetylation and deacetylation: identification of acetylation and methylation sites of HeLa histone H4 by mass spectrometry, Mol Cell Proteomics, vol.1, pp.500-508, 2002.

S. K. Kurdistani, S. Tavazoie, and M. Grunstein, Mapping global histone acetylation patterns to gene expression, Cell, vol.117, pp.721-754, 2004.

M. F. Dion, S. J. Altschuler, L. F. Wu, and O. J. Rando, Genomic characterization reveals a simple histone H4 acetylation code, Proc Natl Acad Sci, vol.102, pp.5501-5507, 2005.

H. G. Yoon, Y. Choi, P. A. Cole, and J. Wong, Reading and function of a histone code involved in targeting corepressor complexes for repression, Mol Cell Biol, vol.25, pp.324-359, 2005.

Y. Zhou and I. Grummt, The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing, Curr Biol, vol.15, pp.1434-1442, 2005.

R. H. Jacobson, A. G. Ladurner, D. S. King, and R. Tjian, Structure and function of a human TAFII250 double bromodomain module, Science, vol.288, pp.1422-1427, 2000.

C. Dhalluin, J. E. Carlson, and L. Zeng, Structure and ligand of a histone acetyltransferase bromodomain, Nature, vol.399, pp.491-497, 1999.

C. R. Clapier, K. P. Nightingale, and P. B. Becker, A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI, Nucleic Acids Res, vol.30, pp.649-55, 2002.

D. F. Corona, C. R. Clapier, P. B. Becker, and J. W. Tamkun, Modulation of ISWI function by site-specific histone acetylation, EMBO Rep, vol.3, pp.242-249, 2002.

A. M. Makowski, R. N. Dutnall, and A. T. Annunziato, Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase, J Biol Chem, vol.276, pp.43499-502, 2001.

M. Shogren-knaak, H. Ishii, and J. M. Sun, Histone H4-K16 acetylation controls chromatin structure and protein interactions, Science, vol.311, pp.844-851, 2006.

E. Guccione, F. Martinato, and G. Finocchiaro, Myc-binding-site recognition in the human genome is determined by chromatin context, Nat Cell Biol, vol.8, pp.764-70, 2006.

W. J. Shia, B. Li, and J. L. Workman, SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae, Genes Dev, vol.20, pp.2507-2519, 2006.

S. H. Meijsing and A. E. Ehrenhofer-murray, The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae, Genes Dev, vol.15, pp.3169-82, 2001.

B. Dorigo, T. Schalch, K. Bystricky, and T. J. Richmond, Chromatin fiber folding: requirement for the histone H4 N-terminal tail, J Mol Biol, vol.327, pp.85-96, 2003.

M. F. Fraga, E. Ballestar, and A. Villar-garea, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat Genet, vol.37, pp.391-400, 2005.

D. B. Seligson, S. Horvath, and T. Shi, Global histone modification patterns predict risk of prostate cancer recurrence, Nature, vol.435, pp.1262-1268, 2005.

K. Pruitt, R. L. Zinn, and J. E. Ohm, Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation, PLoS Genet, vol.2, p.40, 2006.

A. G. Ladurner, C. Inouye, R. Jain, and R. Tjian, Bromodomains mediate an acetylhistone encoded antisilencing function at heterochromatin boundaries, Mol Cell, vol.11, pp.365-76, 2003.