W. K. Kesse, T. L. Parker, and R. E. Coupland, The innervation of the adrenal gland. I. The source of pre-and postganglionic nerve fibres to the rat adrenal gland, J. Anat, vol.157, pp.33-41, 1988.

W. E. Macfarland and H. A. Davenport, Adrenal innervation, J. Comp. Neurol, vol.75, pp.219-233, 1941.

T. L. Parker, The innervation of the adrenal medulla, Autonomic-Endocrine Interactions, pp.289-314, 1996.

X. Guo and A. R. Wakade, Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals, J. Physiol, vol.475, pp.539-545, 1994.

H. Holgert, A. Dagerlind, T. Hokfelt, and H. Lagercrantz, Neuronal markers, peptides and enzymes in nerves and chromaffin cells in the rat adrenal medulla during postnatal development, Brain Res. Dev. Brain Res, vol.83, pp.35-52, 1994.

L. E. Eiden, A. C. Emery, L. Zhang, and C. B. Smith, PACAP signaling in stress: insights from the chromaffin cell, Pflugers Arch, vol.470, pp.79-88, 2018.

W. Feldberg, B. Minz, and H. Tsudzimura, The mechanism of the nervous discharge of adrenaline, J. Physiol, vol.81, pp.286-304, 1934.

W. W. Douglas and A. M. Poisner, Preferential release of adrenaline from the adrenal medulla by muscarine and pilocarpine, Nature, vol.208, pp.1102-1103, 1965.

L. W. Role and R. L. Perlman, Both nicotinic and muscarinic receptors mediate catecholamine secretion by isolated guinea-pig chromaffin cells, Neuroscience, vol.10, pp.979-985, 1983.

A. R. Wakade and T. D. Wakade, Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine, Neuroscience, vol.10, pp.973-978, 1983.

W. W. Douglas and R. P. Rubin, Mechanism of nicotinic action at the adrenal medulla: calcium as a link in stimulus-secretion coupling, Nature, vol.192, pp.1087-1089, 1961.

A. Perez-alvarez and A. Albillos, Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells, J. Neurochem, vol.103, pp.2281-2290, 2007.

J. Petrovic, P. L. Walsh, K. T. Thornley, C. E. Miller, and R. M. Wightman, Realtime monitoring of chemical transmission in slices of the murine adrenal gland, Endocrinology, vol.151, pp.1773-1783, 2010.

T. Iijima, G. Matsumoto, and Y. Kidokoro, Synaptic activation of rat adrenal medulla examined with a large photodiode array in combination with a voltage-sensitive dye, Neuroscience, vol.51, pp.211-219, 1992.

M. E. Holman, H. A. Coleman, M. A. Tonta, and H. C. Parkington, Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs, J. Physiol, vol.478, pp.115-124, 1994.

J. G. Barbara and K. Takeda, Quantal release at a neuronal nicotinic synapse from rat adrenal gland, Proc. Natl. Acad. Sci. U S A, vol.93, pp.9905-9909, 1996.

J. G. Barbara, J. C. Poncer, R. A. Mckinney, and K. Takeda, An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation, J. Neurosci. Methods, vol.80, pp.181-189, 1998.

C. Colomer, L. A. Olivos-ore, A. Vincent, J. M. Mcintosh, and A. R. Artalejo, Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity, J. Neurosci, vol.30, pp.6732-6742, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00483826

A. O. Martin, M. N. Mathieu, and N. C. Guerineau, Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells, 2003.

, J. Neurosci, vol.23, pp.3669-3678

A. Hernandez-vivanco, A. J. Hone, M. L. Scadden, B. Carmona-hidalgo, and J. M. Mcintosh, Monkey adrenal chromaffin cells express alpha6beta4* nicotinic acetylcholine receptors, PLoS One, vol.9, p.94142, 2014.

A. Albillos and J. M. Mcintosh, Human nicotinic receptors in chromaffin cells: characterization and pharmacology, Pflugers Arch, vol.470, pp.21-27, 2018.

M. Criado, Acetylcholine nicotinic receptor subtypes in chromaffin cells, Pflugers Arch, vol.470, pp.13-20, 2018.

M. G. Lopez, C. Montiel, C. J. Herrero, E. Garcia-palomero, and I. Mayorgas, Unmasking the functions of the chromaffin cell alpha7 nicotinic receptor by using short pulses of acetylcholine and selective blockers, Proc. Natl. Acad. Sci. U S A, vol.95, pp.14184-14189, 1998.

L. C. Gahring, E. Myers, S. Palumbos, and R. S. , Nicotinic receptor Alpha7 expression during mouse adrenal gland development, PLoS One, vol.9, p.103861, 2014.

B. D. Shivers, T. J. Gorcs, P. E. Gottschall, and A. A. , Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions, Endocrinology, vol.128, pp.3055-3065, 1991.

K. Moller and F. Sundler, Expression of pituitary adenylate cyclase activating peptide (PACAP) and PACAP type I receptors in the rat adrenal medulla, Regul. Pept, vol.63, pp.129-139, 1996.

C. Hamelink, O. Tjurmina, R. Damadzic, W. S. Young, and E. Weihe, Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis, Proc. Natl. Acad. Sci. U S A, vol.99, pp.461-466, 2002.

H. Thoenen, R. A. Mueller, and A. J. , Increased tyrosine hydroxylase activity after drug-induced alteration of sympathetic transmission, Nature, vol.221, p.1264, 1969.

S. Daikoku, M. Kinutani, and M. Sako, Development of the adrenal medullary cells in rats with reference to synaptogenesis, Cell Tissue Res, vol.179, pp.77-86, 1977.

T. A. Slotkin, Development of the sympathoadrenal axis, Developmental Neurobiology of the Autonomic Nervous System (Gootman, P.M, pp.69-96, 1986.

M. Arribas-blazquez, L. A. Olivos-ore, M. V. Barahona, M. Sanchez-de-la-muela, and V. Solar, Overexpression of P2X3 and P2X7 receptors and TRPV1 channels in adrenomedullary chromaffin cells in a rat model of neuropathic pain, Int. J. Mol. Sci, vol.20, 2019.

N. Stroth, B. A. Kuri, T. Mustafa, S. A. Chan, and C. B. Smith, PACAP controls adrenomedullary catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve firing rates characteristic of stress transduction in male mice, Endocrinology, vol.154, pp.330-339, 2013.

L. E. Eiden and S. Z. Jiang, What's new in Endocrinology: the chromaffin cell, Front. Endocrinol, vol.9, p.711, 2018.

S. Lamouche and N. Yamaguchi, PACAP release from the canine adrenal gland in vivo: its functional role in severe hypotension, Am. J. Physiol. Regul Integr. Comp. Physiol, vol.284, pp.588-597, 2003.

N. Yamaguchi and S. Lamouche, Enhanced reactivity of the adrenal medulla in response to pituitary adenylate cyclase activating polypeptide1-27 (PACAP) during insulin-induced hypoglycemia in anesthetized dogs. Can, J. Physiol. Pharmacol, vol.77, pp.819-826, 1999.

B. A. Kuri, S. A. Chan, and C. B. Smith, PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway, J. Neurochem, vol.110, pp.1214-1225, 2009.

L. Taupenot, M. Mahata, S. K. Mahata, and D. T. Connor, Time-dependent effects of the neuropeptide PACAP on catecholamine secretion: stimulation and desensitization, Hypertension, vol.34, pp.1152-1162, 1999.

J. Buttigieg, S. Brown, A. C. Holloway, and C. A. Nurse, Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of K ATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor2alpha, J. Neurosci, vol.29, pp.7137-7147, 2009.

C. A. Nurse, J. Buttigieg, S. Brown, and A. C. Holloway, Regulation of oxygen sensitivity in adrenal chromaffin cells, Ann. N Y Acad. Sci, vol.1177, pp.132-139, 2009.

M. Wang, Q. Wang, and M. D. Whim, Fasting induces a form of autonomic synaptic plasticity that prevents hypoglycemia, Proc. Natl. Acad. Sci. U S A, vol.113, pp.3029-3038, 2016.

R. Gupta, Y. Ma, M. Wang, and M. D. Whim, AgRP-expressing adrenal chromaffin cells are involved in the sympathetic response to fasting, Endocrinology, vol.158, pp.2572-2584, 2017.

A. Rudchenko, E. Akude, and C. E. , Synapses on sympathetic neurons and parasympathetic neurons differ in their vulnerability to diabetes, J. Neurosci, vol.34, pp.8865-8874, 2014.

D. Angelantonio, S. Giniatullin, R. Costa, V. Sokolova, E. et al., Modulation of neuronal nicotinic receptor function by the neuropeptides CGRP and substance P on autonomic nerve cells, Br. J. Pharmacol, vol.139, pp.1061-1073, 2003.

F. Sala, A. Nistri, and C. M. , Nicotinic acetylcholine receptors of adrenal chromaffin cells, Acta Physiol, vol.192, pp.203-212, 2008.

S. J. Bacon and A. D. Smith, Preganglionic sympathetic neurones innervating the rat adrenal medulla: immunocytochemical evidence of synaptic input from nerve terminals containing substance P, GABA or 5-hydroxytryptamine, J. Auton. Nerv. Syst, vol.24, pp.97-122, 1988.

B. G. Livett, P. Boksa, D. M. Dean, F. Mizobe, and M. H. Lindenbaum, Use of isolated chromaffin cells to study basic release mechanisms, J. Auton. Nerv. Syst, vol.7, pp.59-86, 1983.

D. E. Clapham and E. Neher, Substance P reduces acetylcholine-induced currents in isolated bovine chromaffin cells, J. Physiol, vol.347, pp.255-277, 1984.

S. M. Simasko, J. A. Durkin, and G. A. Weiland, Effects of substance P on nicotinic acetylcholine receptor function in PC12 cells, J. Neurochem, vol.49, pp.253-260, 1987.

G. A. Stafford, R. E. Oswald, and G. A. Weiland, The beta subunit of neuronal nicotinic acetylcholine receptors is a determinant of the affinity for substance P inhibition, Mol. Pharmacol, vol.45, pp.758-762, 1994.

K. Kumakura, F. Karoum, A. Guidotti, and C. E. , Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells, Nature, vol.283, pp.489-492, 1980.

M. Inoue and H. Kuriyama, Somatostatin inhibits the nicotinic receptor-activated inward current in guinea pig chromaffin cells, Biochem. Biophys. Res. Commun, vol.174, pp.750-757, 1991.

M. J. Dowdall, A. F. Boyne, and W. V. , Adenosine triphosphate. A constituent of cholinergic synaptic vesicles, Biochem. J, vol.140, pp.1-12, 1974.

C. D. Unsworth and R. G. Johnson, Acetylcholine and ATP are coreleased from the electromotor nerve terminals of Narcine brasiliensis by an exocytotic mechanism, Proc. Natl. Acad. Sci. U S A, vol.87, pp.553-557, 1990.

G. Burnstock, Physiology and pathophysiology of purinergic neurotransmission, Physiol. Rev, vol.87, pp.659-797, 2007.

M. Afework and G. Burnstock, Distribution of P2X receptors in the rat adrenal gland, Cell Tissue Res, vol.298, pp.449-456, 1999.

M. Afework and G. Burnstock, Changes in P2Y2 receptor localization on adrenaline-and noradrenaline-containing chromaffin cells in the rat adrenal gland during development and aging, Int. J. Dev. Neurosci, vol.23, pp.567-573, 2005.

R. Fischer-colbrie, R. L. Eskay, L. E. Eiden, and D. Maas, Transsynaptic regulation of galanin, neurotensin, and substance P in the adrenal medulla: combinatorial control by second-messenger signaling pathways, J. Neurochem, vol.59, pp.780-783, 1992.

A. Tabarin, D. Chen, R. Hakanson, and F. Sundler, Pituitary adenylate cyclaseactivating peptide in the adrenal gland of mammals: distribution, characterization and responses to drugs, Neuroendocrinology, vol.59, pp.113-119, 1994.

A. Dagerlind, S. Brimijoin, M. Goldstein, and T. Hokfelt, Effects of antibodies against acetylcholinesterase on the expression of peptides and catecholamine synthesizing enzymes in the rat adrenal gland, Neuroscience, vol.54, pp.1079-1090, 1993.

A. Dagerlind, M. Pelto-huikko, J. M. Lundberg, R. Ubink, and A. Verhofstad, Immunologically induced sympathectomy of preganglionic nerves by antibodies against acetylcholinesterase: increased levels of peptides and their messenger RNAs in rat adrenal chromaffin cells, Neuroscience, vol.62, pp.217-239, 1994.

P. R. Lewis and C. C. Shute, An electron-microscopic study of cholinesterase distribution in the rat adrenal medulla, J. Microsc, vol.89, pp.181-193, 1969.

O. Grynszpan-winograd, Adrenaline and noradrenaline cells in the adrenal medulla of the hamster: a morphological study of their innervation, J. Neurocytol, vol.3, pp.341-361, 1974.

Y. M. Ulrich-lai and W. C. Engeland, Adrenal splanchnic innervation modulates adrenal cortical responses to dehydration stress in rats, Neuroendocrinology, vol.76, pp.79-92, 2002.

Y. M. Ulrich-lai, M. M. Arnhold, and W. C. Engeland, Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.290, pp.1128-1135, 2006.

Y. M. Ulrich-lai and W. C. Engeland, Hyperinnervation during adrenal regeneration influences the rate of functional recovery, Neuroendocrinology, vol.71, pp.107-123, 2000.

P. D. Marley, S. J. Bunn, D. C. Wan, A. M. Allen, and F. A. Mendelsohn, Localization of angiotensin II binding sites in the bovine adrenal medulla using a labelled specific antagonist, Neuroscience, vol.28, pp.777-787, 1989.

H. Kuramoto, H. Kondo, and T. Fujita, Calcitonin gene-related peptide (CGRP)-like immunoreactivity in scattered chromaffin cells and nerve fibers in the adrenal gland of rats, Cell Tissue Res, vol.247, pp.309-315, 1987.

Y. M. Ulrich-lai, A. I. Fraticelli, and W. C. Engeland, Capsaicin-sensitive nerve fibers: a potential extra-ACTH mechanism participating in adrenal regeneration in rats, Microsc. Res. Tech, vol.61, pp.252-258, 2003.

C. Heym, B. Braun, L. Klimaschewski, and W. Kummer, Chemical codes of sensory neurons innervating the guinea-pig adrenal gland, Cell Tissue Res, vol.279, pp.169-181, 1995.

M. Schultzberg, J. M. Lundberg, T. Hokfelt, L. Terenius, and J. Brandt, Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla, Neuroscience, vol.3, pp.1169-1186, 1978.

V. Holets and R. Elde, The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study, Neuroscience, vol.7, pp.1155-1174, 1982.

M. Pelto-huikko, T. Salminen, and A. Hervonen, Localization of enkephalins in adrenaline cells and the nerves innervating adrenaline cells in rat adrenal medulla, Histochemistry, vol.82, pp.377-383, 1985.

N. N. Kumar, K. Allen, L. Parker, H. Damanhuri, and A. K. Goodchild, Neuropeptide coding of sympathetic preganglionic neurons; focus on adrenally projecting populations, Neuroscience, vol.170, pp.789-799, 2010.

M. Pelto-huikko, T. Salminen, and A. Hervonen, Localization of enkephalinand neurotensin-like immunoreactivities in cat adrenal medulla, Histochemistry, vol.88, pp.31-36, 1987.

V. Holets and R. Elde, Sympathoadrenal preganglionic neurons: their distribution and relationship to chemically-coded fibers in the kitten intermediolateral cell column, 1983.

, J. Auton. Nerv. Syst, vol.7, pp.149-163

H. J. Zentel, D. Nohr, S. Muller, N. Yanaihara, and W. E. , Differential occurrence and distribution of galanin in adrenal nerve fibres and medullary cells in rodent and avian species, Neurosci. Lett, vol.120, pp.167-170, 1990.

S. Gasman, H. Vaudry, F. Cartier, G. Tramu, and A. Fournier, Localization, identification, and action of galanin in the frog adrenal gland, Endocrinology, vol.137, pp.5311-5318, 1996.

J. Staszewska-barczak and J. R. Vane, The release of catechol amines from the adrenal medulla by histamine, Br. J. Pharmacol. Chemother, vol.25, pp.728-742, 1965.

T. Yoshizaki, Effect of histamine, bradykinin and morphine on adrenaline release from rat adrenal gland, Jpn. J. Pharmacol, vol.23, pp.695-699, 1973.

Z. Khalil, B. G. Livett, and M. P. , Sensory fibres modulate histamineinduced catecholamine secretion from the rat adrenal medulla and sympathetic nerves, 1987.

, J. Physiol, vol.391, pp.511-526

H. Kuramoto, H. Kondo, and T. Fujita, Neuropeptide tyrosine (NPY)-like immunoreactivity in adrenal chromaffin cells and intraadrenal nerve fibers of rats, Anat. Rec, vol.214, pp.321-328, 1986.

M. Pelto-huikko, T. Salminen, M. Partanen, M. Toivanen, and A. Hervonen, Immunohistochemical localization of neurotensin in hamster adrenal medulla, Anat. Rec, vol.211, pp.458-464, 1985.

N. J. Dun, S. L. Dun, H. H. Lin, L. L. Hwang, and A. Saria, Secretoneurin-like immunoreactivity in rat sympathetic, enteric and sensory ganglia, Brain Res, vol.760, pp.8-16, 1997.

N. M. Appel, M. W. Wessendorf, and R. P. Elde, Coexistence of serotonin-and substance P-like immunoreactivity in nerve fibers apposing identified sympathoadrenal preganglionic neurons in rat intermediolateral cell column, Neurosci. Lett, vol.65, pp.241-246, 1986.

I. Jensen, I. J. Llewellyn-smith, P. Pilowsky, J. B. Minson, and C. J. , Serotonin inputs to rabbit sympathetic preganglionic neurons projecting to the superior cervical ganglion or adrenal medulla, J. Comp. Neurol, vol.353, pp.427-438, 1995.

S. R. Vincent, C. H. Mcintosh, P. B. Reiner, and J. C. Brown, Somatostatin immunoreactivity in the cat adrenal medulla. Localization and characterization, Histochemistry, vol.87, pp.483-486, 1987.

X. F. Zhou, B. J. Oldfield, and B. G. Livett, Substance P-containing sensory neurons in the rat dorsal root ganglia innervate the adrenal medulla, J. Auton. Nerv. Syst, vol.33, pp.247-254, 1991.

T. Hokfelt, J. M. Lundberg, M. Schultzberg, and F. J. , , 1981.

, Immunohistochemical evidence for a local VIP-ergic neuron system in the adrenal gland of the rat, Acta Physiol. Scand, vol.113, pp.575-576

M. A. Holzwarth, The distribution of vasoactive intestinal peptide in the rat adrenal cortex and medulla, J. Auton. Nerv. Syst, vol.11, pp.269-283, 1984.

T. D. Wakade, M. A. Blank, R. K. Malhotra, R. Pourcho, and A. R. Wakade, The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion, J. Physiol, vol.444, pp.349-362, 1991.

T. Watanabe, Y. Masuo, H. Matsumoto, N. Suzuki, and T. Ohtaki, Pituitary adenylate cyclase activating polypeptide provokes cultured rat chromaffin cells to secrete adrenaline, Biochem. Biophys. Res. Commun, vol.182, pp.403-411, 1992.

M. Frodin, J. Hannibal, B. S. Wulff, S. Gammeltoft, and F. J. , Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells, Neuroscience, vol.65, pp.599-608, 1995.

N. J. Dun, H. Tang, S. L. Dun, R. Huang, and E. C. Dun, Pituitary adenylate cyclase activating polypeptide-immunoreactive sensory neurons innervate rat adrenal medulla, Brain Res, vol.716, pp.11-21, 1996.

S. Lamouche, D. Martineau, and Y. N. , Modulation of adrenal catecholamine release by PACAP in vivo, Am. J. Physiol, vol.276, pp.162-170, 1999.

K. Tornoe, J. Hannibal, T. B. Jensen, B. Georg, and L. F. Rickelt, PACAP-(1-38) as neurotransmitter in the porcine adrenal glands, Am. J. Physiol. Endocrinol. Metab, vol.279, pp.1413-1425, 2000.

D. Ait-ali, B. Samal, T. Mustafa, and L. E. Eiden, Neuropeptides, growth factors, and cytokines: a cohort of informational molecules whose expression is up-regulated by PACAP in the adrenal medulla expression of type I PACAP receptor, 2010.

, PACAP-evoked E release in cultured chromaffin cells, issue.133

, 135) in vivo modulation of catecholamine release by, PACAP immunoreactivity in nerve fibers innervating chromaffin cells, vol.134, p.1991

, PACAP as neurotransmitter at mouse adrenomedullary synapses (45) specific PACAP-evoked catecholamine secretion under elevated splanchnic nerve firing (62) 2000's PACAP as adrenal emergency neurotransmitter for stress response, PACAP as a neurotransmitter in the porcine adrenal gland, 2010.

, Is PACAP the major neurotransmitter for stress induction at the adrenomedullary synapse

, PACAP-triggered enhancement of gap junctional electrical coupling (64) 2010's PACAP-and elevated nerve stimulation-induced T-type Ca 2+ channel recruitement in chromaffin cells