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Abstract

Background

Observational studies on pubertal timing and asthma, mainly performed in females, have

provided conflicting results about a possible association of early puberty with higher risk of

adult asthma, possibly due to residual confounding. To overcome issues of confounding, we

used Mendelian randomisation (MR), i.e., genetic variants were used as instrumental vari-

ables to estimate causal effects of early puberty on post-pubertal asthma in both females

and males.

Methods and findings

MR analyses were performed in UK Biobank on 243,316 women using 254 genetic variants

for age at menarche, and on 192,067 men using 46 variants for age at voice breaking. Age

at menarche, recorded in years, was categorised as early (<12), normal (12–14), or late

(>14); age at voice breaking was recorded and analysed as early (younger than average),

normal (about average age), or late (older than average). In females, we found evidence for

a causal effect of pubertal timing on asthma, with an 8% increase in asthma risk for early

menarche (odds ratio [OR] 1.08; 95% CI 1.04 to 1.12; p = 8.7 × 10−5) and an 8% decrease

for late menarche (OR 0.92; 95% CI 0.89 to 0.97; p = 3.4 × 10−4), suggesting a continuous

protective effect of increasing age at puberty. In males, we found very similar estimates of

causal effects, although with wider confidence intervals (early voice breaking: OR 1.07; 95%

CI 1.00 to 1.16; p = 0.06; late voice breaking: OR 0.93; 95% CI 0.87 to 0.99; p = 0.03). We

detected only modest pleiotropy, and our findings showed robustness when different meth-

ods to account for pleiotropy were applied. BMI may either introduce pleiotropy or lie on the

causal pathway; secondary analyses excluding variants associated with BMI yielded similar

results to those of the main analyses. Our study relies on self-reported exposures and out-

comes, which may have particularly affected the power of the analyses on age at voice

breaking.
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Conclusions

This large MR study provides evidence for a causal detrimental effect of early puberty on

asthma, and does not support previous observational findings of a U-shaped relationship

between pubertal timing and asthma. Common biological or psychological mechanisms

associated with early puberty might explain the similarity of our results in females and

males, but further research is needed to investigate this. Taken together with evidence for

other detrimental effects of early puberty on health, our study emphasises the need to fur-

ther investigate and address the causes of the secular shift towards earlier puberty

observed worldwide.

Author summary

Why was this study done?

• Worldwide there has been a shift towards earlier puberty over time, possibly due to

changes in childhood lifestyle and levels of adiposity.

• Early puberty has been linked to an increased risk of asthma in women, but findings are

inconsistent across studies, and little research has been done in men.

• There is some suggestion that late puberty might also increase the risk of asthma.

• Studies performed so far have some methodological limitations that make it difficult to

distinguish true effects from spurious findings.

What did the researchers do and find?

• We studied the effect of age at puberty on asthma in women and men using Mendelian

randomisation, an approach that exploits genetic data to overcome some limitations of

classical observational studies.

• From the UK Biobank study, we analysed data on approximately 240,000 women and

approximately 190,000 men with available genetic data and self-reported information

on asthma and age at puberty (menarche for women and voice breaking for men).

• We found that women and men with early puberty had an increased risk of asthma of

8% and 7%, respectively.

• We found no evidence of a detrimental effect of late puberty on asthma.

What do these findings mean?

• These findings, together with suggestions of other detrimental effects of early puberty

on health, emphasise the importance of evaluating the overall evidence on health effects

of early puberty.
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• The similarity of findings in females and males might be explained by common biologi-

cal or psychological factors related to early puberty, but further research is needed to

investigate this.

Introduction

Asthma is one of the most common chronic diseases in children and adults, and its prevalence

has been increasing worldwide [1]. Multiple risk factors for asthma have been proposed, but

one of the few consistent observations is sex differences in disease prevalence. Understanding

the reason for these differences could lead to the identification of modifiable factors that could

be targeted by preventive measures [2].

Sex differences in asthma prevalence are age dependent, with a switch from male predomi-

nance in childhood to female predominance from adolescence onwards [3,4]. It has been

hypothesized that the higher prevalence of post-pubertal asthma in females, with higher inci-

dence and lower remission rates [4], might be due to a pathogenetic role of female sex hor-

mones [3,5]. This is further supported by observational findings of an association of early

menarche with increased risk of post-pubertal asthma [6]. In addition to the hypothesis of sex

hormones mediating the effect of early menarche on asthma, another proposed mechanism is

through obesity: Early menarche would increase the risk of adult obesity, which would in turn

affect asthma, possibly through an effect of higher leptin levels on the immune system and air-

way inflammation, although it could be the other way round, with higher childhood BMI and

leptin increasing the risk of early menarche, which would increase the risk of asthma [7,8].

Despite the plausibility that the observed association of early menarche with asthma may rep-

resent a causal effect, this cannot be concluded based on the available evidence, and, if there is

a causal effect, it is unclear what its magnitude may be. A meta-analysis of 7 observational

studies suggested a 37% increase in asthma risk for women with menarche before the age of 12

years, but there was substantial heterogeneity in results across studies [9]. The meta-analysis

was mainly based on young study populations, and an observational study in UK Biobank

including women aged 40 to 69 years suggested a smaller increase of 6% in asthma risk after

adjustment for confounders [10]. The same study also showed an association in males, with an

11% increase in risk associated with early voice breaking, a marker of male puberty, and it sug-

gested a U-shaped relationship in females and males, with an increased risk of asthma associ-

ated with both early and late puberty [10]. More recently, a prospective study in women up to

the age of 60 years suggested no association after extensive adjustment for confounders [11].

The possibility of residual confounding by unmeasured factors, including intrauterine expo-

sures as well as childhood diet, lifestyle and socioeconomic status, limits the interpretation of

these findings and may explain inconsistencies across studies. There is also a potential problem

of reverse causation, as there are some data suggesting that girls with childhood asthma might

have earlier menarche [12]. This could generate spurious associations, particularly if study par-

ticipants with pre-pubertal asthma were not excluded from the analyses due to poor recall of

their childhood symptoms.

The Mendelian randomisation (MR) approach applied here uses genetic variants known to

affect age at puberty as proxies (instrumental variables) to derive estimates of the effect of age

at puberty on asthma [13]. As genes are randomly allocated at the time of conception, genetic

associations are not affected by typical confounding factors or reverse causation, and MR can
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provide indirect evidence for a causal effect if its underlying assumptions hold [13,14]. Here

we describe a large MR study in UK Biobank aimed at estimating the causal effect of age at

puberty on the risk of post-pubertal asthma in females and males.

Methods

The UK Biobank is a prospective study of about 500,000 adults aged 40–69 years recruited in

2006–2010 across 22 centres, aimed at identifying causes of chronic disease in middle and old

age [15]. About 95% of the participants are white. Data on doctor-diagnosed asthma and age at

onset (AAO), age at menarche in females, and age at voice breaking in males are all based on

self-reports from questionnaires. The specific questions used to define the variables used are

reported in Table 1, together with the UK Biobank data-field number for access to further

information on measurement procedures through the UK Biobank webpage (http://biobank.

ctsu.ox.ac.uk/crystal/search.cgi). While age at menarche was recorded in years, age at voice

breaking was recorded as a 3-level categorical variable (at a younger, average, or older age

compared to peers). In order to increase comparability with the findings in males, we catego-

rised age at menarche in females as early (<12 years), normal (12 to 14), or late (>14), using

“normal” as the reference. This also allowed the investigation of possible non-linear associa-

tions, such as U-shaped relationships. In females, we defined post-pubertal asthma as asthma

occurring after menarche; in males, this was defined as asthma occurring after the age of 15

years. Participants with pre-pubertal asthma were excluded from the analyses.

Choice of instruments for MR analyses

We chose MR instruments for age at menarche based on findings from the large genome-wide

association (GWA) meta-analysis by Day et al. [16], which included 329,345 women of

Table 1. Characteristics of the study population, for females and males.

Variable Females

(N = 243,316)

Males

(N = 192,067)

Definition

Age (years) 56.4 (8.0) 56.8 (8.2) Age at assessment [data-field 21003]

Age at menarche

(years)

13.0 (1.6) Self-reported (“How old were you when your periods started?”) [data-field 2714]

Early (<12) 48,840 (20.1)

Normal (12–14) 153,727 (63.2)

Late (>14) 40,749 (16.7)

Voice breaking Self-reported (“When did your voice break?”) [data-field 2385]

Early (younger than

average)

8,353 (4.3)

Normal (about

average age)

172,604 (89.9)

Late (older than

average)

11,110 (5.8)

BMI (kg/m2) 27.0 (5.1) 27.8 (4.2) Calculated from measured height and weight [data-field 21001]

Asthma 22,295 (9.2) 12,066 (6.3) Self-reported doctor-diagnosed asthma (“Has a doctor ever told you that you have asthma?”) [data-field 6152

(all participants) + data-field 22127 (subset from online occupational follow-up)]1

Asthma AAO (years) 39.7 (13.4) 41.0 (13.1) Self-reported (“What was your age when the asthma was first diagnosed?”) [data-field 3786]

Reported are mean (SD) for continuous variables and N (%) for categorical variables. Only post-pubertal asthma is considered. Data-field: UK Biobank variable’s

identifier (link to further information through website: http://biobank.ctsu.ox.ac.uk/crystal/search.cgi). Asthma and age at onset (AAO) refer to post-pubertal asthma.
1Asthma was considered present if there was a positive answer in either of the 2 data-fields.

https://doi.org/10.1371/journal.pmed.1002634.t001
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European ancestry from the ReproGen consortium (40 studies, N = 179,117), 23andMe (N =
76,831), and UK Biobank (N = 73,397). In all, 389 independent single nucleotide polymor-

phisms (SNPs) were identified at a genome-wide significant level (p< 5 × 10−8), explaining

overall 7.4% of the population variance in age at menarche. Of the reported 389 SNPs, 372

were available (or had a proxy, linkage disequilibrium r2 > 0.7) in UK Biobank.

The instrument strength of each SNP for both early and late menarche was assessed using

the F statistic, a function of the magnitude and precision of the SNP’s effect on menarche [17].

To avoid bias associated with the use of weak instruments, we excluded SNPs with a low F sta-

tistic in UK Biobank, using the common threshold of 10 [18]. This left us with 206 and 151

SNPs (254 in total) as instruments for early and late menarche, respectively; F statistic values

varied from 10.1 to 382.5 for early menarche and from 10.0 to 150.0 for late menarche (S1

Table). All SNPs had good imputation quality (info score > 0.8).

In the GWA meta-analysis by Day et al. [16], 127 of the 389 age-at-menarche SNPs were

also associated in the same direction with age at voice breaking at nominal significance level;

of these, only 40 were strong instruments (F statistic > 10) for either early or late puberty in

males. In order to increase our number of instruments, we searched the literature for addi-

tional genetic studies on age at voice breaking, using the NHGRI GWAS Catalog [19] and

HuGE Navigator [20], as well as crosschecking of references. We identified 3 other GWA stud-

ies [21–23], 2 of which added new independent SNPs, the studies by Day et al. [22] and by

Pickrell et al. [23] (S2 Table). After combining all SNPs and excluding weak instruments, 24

and 37 SNPs (46 in total) remained for the MR analyses of early and late voice breaking,

respectively. Their F statistic values varied from 10.2 to 52.4 for early voice breaking and from

10.8 to 101.6 for late voice breaking (S2 Table). All SNPs had good imputation quality (info

score > 0.9). All 46 SNPs were independent, except for 3 pairs of correlated SNPs (linkage dis-

equilibrium r2 of 0.3, 0.6, and 0.6). As a post hoc analysis to investigate the impact of the corre-

lation between these SNPs on our MR results, we used the method by Burgess et al., which

accounts for the correlation between instruments [24].

Details on genotyping and imputation methods and quality control procedures in UK Bio-

bank are available elsewhere [25].

MR methods

In 1-sample MR investigations (where the genetic associations with both risk factor and out-

come are estimated within the same study), the standard MR approach is the 2-stage least

squares (2SLS) method: the risk factor is regressed jointly on all SNPs, and the outcome is

regressed on the genetically predicted values of the risk factor from the first regression [26]. As

this method does not account for pleiotropy (where SNPs chosen as instruments for the risk

factor affect the outcome through additional independent pathways [14]) and we cannot rule

out the possibility of pleiotropic effects for some of our SNPs, we used methods developed for

2-sample MR. Here estimates of the genetic associations with risk factor and outcome are

obtained separately for each SNP. If all SNPs are valid instruments (e.g., no pleiotropy) and

linear models with no interactions faithfully describe the SNP–risk factor and risk factor–out-

come relationships [27], the individual MR estimates of causal effect will vary only by chance,

with no between-instrument heterogeneity [28]. For each SNP, the association with early or

late menarche/voice breaking (G–X, expressed as log odds ratio [OR]) and the association

with asthma (G–Y, log OR) were estimated using multiple logistic regression adjusted for

assessment centre, first 10 ancestry principal components, and genotyping array. It should be

noted that with binary variables the linearity assumption is strictly violated [29], but in practice

the magnitude of the bias has been shown to be negligible [30].
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An MR estimate was obtained for each SNP using a Wald estimator (ratio of G–Y over G–

X), with standard error derived using the Delta method [31], and individual MR estimates

were pooled using inverse-variance weighted (IVW) fixed-effect meta-analysis [32]. The

pooled MR estimate is asymptotically equal to the MR estimate obtained with the 2SLS method

[32], which we also performed as a sensitivity analysis. Since the IVW fixed-effect meta-analy-

sis method assumes no pleiotropy, we performed secondary analyses using approaches based

on different assumptions about pleiotropy across SNPs: (1) IVW random-effect meta-analysis,

assuming random pleiotropic effects (i.e., they cancel out) [33]; (2) MR-Egger regression with

penalised weights, assuming directional pleiotropic effects [34]; and (3) weighted median anal-

ysis, assuming that at least 50% of the SNPs are valid instruments (but with no assumption

about direction of pleiotropic effects) [35].

Some of the genetic variants associated with pubertal timing are also associated with BMI

[16], and this may complicate the interpretation of the results given that BMI could either

introduce pleiotropy (i.e., affecting asthma independently from age at puberty) or lie on the

causal pathway. In secondary analyses we therefore excluded SNPs associated with BMI from

our instruments. We identified SNPs associated with BMI, overweight, or obesity in previous

GWA studies from PhenoScanner, a database of publicly available GWA findings (http://

www.phenoscanner.medschl.cam.ac.uk/phenoscanner) [36], using a significance threshold

corrected for multiple testing, p< 2.0 × 10−4 (0.05/254) for menarche SNPs and p< 1.1 × 10−3

(0.05/46) for voice breaking SNPs.

To provide further support for the absence of pleiotropy, we used pre-pubertal asthma as a

“negative control” outcome [37]. If our instruments affect asthma solely through age at menar-

che/voice breaking, we expect to find no effect on asthma developed before puberty.

There was no formal pre-specified protocol for this study; all the analyses described above

were decided a priori, and we performed additional post hoc analyses suggested by the review-

ers. In particular, sensitivity analyses were carried out to assess the robustness of the results to

the use of different AAO cutoffs for post-pubertal asthma definition in males, and to the pres-

ence of some correlation between genetic variants. Subgroup analyses were also performed to

investigate the possibility that the effect of age at puberty on asthma might be modified by

whether or not one is overweight.

All analyses were performed using Stata 15 (StataCorp).

Results

The characteristics of the study population are summarised in Table 1. We included 243,316

women and 192,067 men with available genetic data and information on age at puberty,

asthma and AAO; post-pubertal asthma was present in 22,295 (9.2%) women and 12,066

(6.3%) men. Asthma prevalence by category of age at puberty was 10.4% for early, 8.9% for

normal, and 8.8% for late menarche in females, and 7.5% for early, 6.2% for normal, and 7.1%

for late age at voice breaking in males.

MR analyses

Detailed results from all MR analyses are reported in S3 and S4 Tables, for females and males,

respectively. In females, we found evidence for a detrimental causal effect of early menarche,

with an OR of 1.08 (95% CI 1.04 to 1.12; p = 8.7 × 10−5), and for a protective causal effect of

late menarche, with an OR of 0.92 (95% CI 0.89 to 0.97; p = 3.4 × 10−4). This suggests a contin-

uous protective effect of increasing age at puberty, and does not support observational evi-

dence of a U-shaped relationship. When we repeated the analysis using age at menarche as a

continuous variable (332 SNPs with F> 10 as instruments), we found an OR of 1.06 (95% CI

Age at puberty and risk of asthma: A Mendelian randomisation study
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1.03 to 1.11; p = 1.6 × 10−4) per year decrease in age at menarche. In males, we found an OR of

1.07 (95% CI 1.00 to 1.16; p = 0.064) for early and 0.93 (95% CI 0.87 to 0.99; p = 0.029) for late

voice breaking. The results remained the same in sensitivity analyses allowing for the correla-

tion between SNPs, and became slightly stronger in sensitivity analyses using higher age cut-

offs for asthma AAO to define post-pubertal asthma, specifically AAO >16 and>17 years (S4

Table). These findings in males are very similar to those in females, despite the much wider

confidence intervals reflecting the lower power of the analyses (fewer instruments available for

age at voice breaking and possibly larger measurement error). The use of a 1-sample 2SLS

approach gave similar results in both females and males (S3 and S4 Tables).

We found only modest between-instrument heterogeneity in females (I2 of 16% and 20%

for early and late puberty, respectively; S3 Table) and little evidence of heterogeneity in males

(I2 of 2% and 0%, respectively; S4 Table). The results of the analyses controlling for pleiotropy

were consistent with those of the main analyses (Fig 1), with differences in the precision of the

estimates in line with expected differences in statistical power [33,35]. MR-Egger regression in

males suggested stronger effects compared to the main analysis, particularly for early puberty

(Fig 1), but the confidence intervals were wide as the analysis had limited power. This low

power is due to the low number of SNPs and their relatively similar instrument strengths

(MR-Egger regression works best when there is a large spread of strengths [38]).

Secondary analyses with exclusion of SNPs associated with BMI (14 and 12 excluded for

early and late menarche; 5 and 7 excluded for early and late voice breaking) gave similar results

to those of the main analyses for both females and males (S3 and S4 Tables).

As the percentages of females in the early and late menarche categories were substantially

higher than the percentages of males in the corresponding categories (Table 1), we repeated

the analyses using more stringent cutoffs for age at menarche. Using a cutoff of<11 instead of

<12 years for early and>15 instead of>14 years for late menarche, the percentages were very

similar to those in males, 4.6% and 5.8% for early and late menarche, respectively. The results

were in line with those of the main analyses, with an OR of 1.06 (95% CI 1.02 to 1.09; p =
6.4 × 10−4) for early and 0.95 (95% CI 0.91 to 0.98; p = 0.002) for late menarche.

Fig 1. Estimates across different MR methods of the effects of early and late puberty on asthma risk in females

(menarche) and males (voice breaking). In red: main analysis. IVW, inverse-variance weighted; MR, Mendelian

randomisation.

https://doi.org/10.1371/journal.pmed.1002634.g001
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The MR analyses on pre-pubertal asthma, used as a negative control outcome, suggested no

effect for either age at menarche or age at voice breaking, further reassuring against effects of

our genetic instruments on asthma independent from pubertal timing.

Finally, we repeated the analyses separately by BMI group, with low/high BMI defined as

below/above the median (<26/�26 kg/m2 in females; <27/�27 kg/m2 in males), to investigate

possible effect modification due to whether or not participants are overweight. BMI data refer

to the participants’ BMI at the time of recruitment into UK Biobank (Table 1). In females,

these analyses (S3 Table) showed effect estimates for early and late menarche consistent with

the main analyses in the high BMI group, and no evidence for effects of early or late menarche

in the low BMI group, but there was no statistical evidence of interaction (p-values of 0.23 and

0.67 for tests of the difference in estimates between BMI groups for early and late menarche,

respectively). In males, there was no evidence of effect modification (S4 Table), as expected

given the very low statistical power.

Discussion

This MR study provides evidence for a detrimental causal effect of earlier age at puberty on the

risk of developing asthma later in life. In females, we estimated an 8% increase in asthma risk

for early menarche (<12 years) and an 8% decrease for late menarche (>14 years). A very sim-

ilar pattern was observed in males, with a 7% increase in risk for early puberty and a 7%

decrease for late puberty, although the evidence was weaker than in females due to the much

lower statistical power. Previous observational studies on pubertal timing and asthma, mainly

performed in females, provided conflicting results, possibly due to residual confounding,

reverse causation, or inappropriate adjustment for factors that lie on the causal pathway. This

study adds to current knowledge by providing evidence for a causal effect of early puberty on

asthma in both females and males, and by clarifying the pattern of the relationship between

pubertal timing and asthma. Previous observational analyses in UK Biobank [10] suggested

that there could be a U-shaped relationship (both early and late puberty would be detrimental),

but our MR study does not support this and suggests a continuous protective effect of increas-

ing age at puberty. The discrepancy may be due to confounding of the observational findings

by factors associated with both delayed puberty and increased risk of asthma.

The results of our post hoc analysis by BMI group are compatible with the possibility of a

stronger effect of age at puberty on asthma in overweight females, but these results have major

limitations that make it difficult to draw conclusions. Stratifying by BMI might introduce col-

lider bias, whereby conditioning on a common effect of exposure and outcome generates a

spurious association between the two [39]; BMI is indeed affected by some of the puberty

SNPs and might also be affected by asthma through medication side effects or reduced physical

exercise. Moreover, the power of these analyses in females is low, in particular to detect inter-

action, and even more so in males. Finally, in our analyses we could only use adult BMI;

although childhood obesity is likely to track to obesity in adulthood, the inability to disentan-

gle the two makes these analyses difficult to interpret. Further research using longitudinal data

is needed to investigate a possible role of obesity in modifying the effect of age at puberty on

asthma.

The similarity of effect estimates in females and males provides insight into possible under-

lying mechanisms. Previously reported associations of early menarche with asthma have been

hypothesized to be explained by earlier and greater cumulative exposure to female sex hor-

mones such as oestrogens or an unbalanced oestrogen/progesterone ratio [5,9], although

experimental evidence in mice does not support this explanation [40]. A role for female sex

hormones has also been suggested by a reported association between pregnancy, characterised
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by increased levels of progesterone and oestrogens, and asthma development [41], and by

decreased incidence of asthma after natural menopause [42,43]. The similarity of our results in

both sexes suggests that early menarche may affect asthma through mechanisms that go

beyond female sex hormones. Other factors accompanying early puberty in both females and

males could be responsible, including biological but also psychological factors, such as depres-

sion, anxiety, and psychosomatic symptoms [44]. Further investigation of these aspects is

important to identify modifiable factors that mediate the effects of early puberty on asthma

and other adverse health outcomes.

The effect estimates found in our large study are of modest magnitude and therefore of lim-

ited clinical relevance to an individual, but they have important implications at a population

level. In Europe, age at menarche decreased by 2 to 3 months per decade between 1790 and

1980 [45] and continued to decrease at a lower rate in the following decades [46], with similar

trends observed worldwide. Although the reasons for such a shift are not fully understood,

there is evidence suggesting a role for changing childhood risk factors, including diet and obe-

sity, psychological stress, and environmental exposures [47]. Childhood obesity is likely the

strongest potentially preventable factor, and currently represents a global epidemic, with half

of the world’s population predicted to be overweight or obese by 2030 [48]. Other environ-

mental risk factors for early puberty warrant further investigation, including endocrine-dis-

rupting chemicals found in many household products that are hypothesized to have

transgenerational epigenetic effects [49]. Observational evidence, particularly in females, has

suggested detrimental effects of early puberty on other health outcomes including lung func-

tion, BMI, cardiometabolic traits, cardiovascular disease, and cancer [10,50–55], with recent

support from MR analyses [16,22,56,57]. Taken together with this evidence, our findings

emphasise the importance of investigating modifiable risk factors for early puberty with the

aim of reversing the secular shift towards earlier puberty observed worldwide.

Strengths and weaknesses

MR is a valuable tool to assess causality in epidemiology as it is not affected by the classical

confounding factors or reverse causation typical of observational studies. However, this tech-

nique is at its most reliable and transparent in the absence of pleiotropy, i.e., in this case, where

the genetic instruments do not have direct effects on asthma independent of age at puberty

[14]. As the risk of pleiotropy is high in MR investigations where many SNPs of uncertain bio-

logical function are included, we thoroughly investigated its potential impact on our findings.

Obesity was identified a priori as a potential source of pleiotropic effects given its genetic over-

lap with pubertal timing, and in fact around 7% of our instruments for age at puberty were

also associated with BMI. In practice, what role BMI might play in our study is unclear, as it

could induce “horizontal” pleiotropy by affecting asthma independently from puberty, but it

could also lie on the causal pathway either preceding puberty (high childhood BMI! early

puberty! high asthma risk) or mediating its effects (early puberty! high adult BMI! high

asthma risk), which is referred to as “vertical pleiotropy” [58]. Only horizontal pleiotropy

would affect the validity of our MR findings. When excluding SNPs associated with BMI, we

found very similar results to those of the main analyses. Pleiotropy could act through mecha-

nisms other than obesity. We therefore investigated the likely magnitude of pleiotropy by

assessing the heterogeneity among causal estimates from the individual SNPs (no heterogene-

ity if all valid instruments [28]), and found evidence of only modest heterogeneity. This was

supported by the consistency in the findings from 3 different methods to adjust for pleiotropy

(IVW random-effect, weighted median, and MR-Egger regression) with those of the main

analyses. Finally, we repeated our analyses using pre-pubertal asthma as a negative control
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outcome, and the null results provided further reassurance against pleiotropic mechanisms

independent from pubertal timing.

We used MR methods developed to investigate and adjust for pleiotropy in 2-sample MR,

where estimates of the association of each SNP with risk factor and outcome are derived from

separate studies, and the 2 estimates are assumed independent. The behaviour of these meth-

ods has yet to be studied in the 1-sample context, where independence of the 2 estimates is vio-

lated. However, the consistency of our findings with those derived from the 1-sample 2SLS

method provides reassurance.

Our study is based on self-reported information on doctor-diagnosed asthma, age at men-

arche, and age at voice breaking, which introduces measurement error and potentially recall

bias. However, since it is unlikely that the error in recalling age at puberty would correlate

with the reporting of asthma or asthma AAO, and vice versa, the measurement error is likely

to be random and only result in reduced power. Voice breaking represents the drop in the

pitch of speech due to changes in vocal chords and larynx cartilage in response to androgen

exposure during late puberty [59]. Despite having been suggested as a good marker of pubertal

timing in males when assessed prospectively [60], age at voice breaking is much harder to

recall in adult cross-sectional studies compared with the more clear-cut milestone of menarche

in females, and may be subject to greater measurement error. This is a general problem and

partly explains the limited knowledge about risk factors and effects of early puberty in males,

for which more evidence from longitudinal birth cohort studies is needed. Another limitation

is that we based the choice of MR instruments for age at menarche and, partly, age at voice

breaking on findings from the GWA meta-analysis by Day et al. [16], of which UK Biobank

genetic data (first release only) represented about 20% of the total sample. However, any over-

estimation of the SNP–age at puberty associations resulting from this would have pulled our

MR estimates towards the null, therefore leading to underestimation of the true causal effects

rather than to false positive results. Finally, findings from observational studies might be biased

by “cohort effects” if individuals from younger generations are at different risk of both early

(or late) puberty and asthma compared with older generations. Despite the secular trends of

decreasing age at puberty [45] and increasing prevalence of asthma [1], this type of confound-

ing would not bias the results of our MR study, unless the secular trends also affect the genetic

variants used as instruments for age at puberty, which is unlikely.

In conclusion, we provide evidence for a causal detrimental effect of early puberty on

asthma. Further studies are needed to investigate the mechanisms underlying this effect, and

the similarity of our findings in females and males suggests a possible role for common biolog-

ical or psychological factors accompanying early pubertal development. Taken together with

evidence for other detrimental effects of early puberty on health, our study emphasises the

need to investigate and address causes of the secular shift towards earlier puberty observed

worldwide.

Supporting information

S1 Table. Data for the MR analyses of age at menarche in females.

(XLSX)

S2 Table. Data for the MR analyses of age at voice breaking in males.

(XLSX)

S3 Table. Results of main and secondary MR analyses of age at menarche in females.

(XLSX)

Age at puberty and risk of asthma: A Mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002634 August 7, 2018 10 / 14

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002634.s001
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002634.s002
http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002634.s003
https://doi.org/10.1371/journal.pmed.1002634


S4 Table. Results of main and secondary MR analyses of age at voice breaking in males.

(XLSX)

Acknowledgments

This research was conducted using the UK Biobank resource under application number

19136, and we thank the participants, field workers, and data managers for their time and

cooperation.

Author Contributions

Conceptualization: Cosetta Minelli, Debbie Jarvis, George Davey Smith, John Henderson.

Formal analysis: Cosetta Minelli, Diana A. van der Plaat, Miguel Pereira, James Potts.

Investigation: Raquel Granell, Andre F. S. Amaral, Osama Mahmoud.

Methodology: Cosetta Minelli, Bénédicte Leynaert, Nuala A. Sheehan, Jack Bowden, John

Thompson, George Davey Smith.

Writing – original draft: Cosetta Minelli, Diana A. van der Plaat, Bénédicte Leynaert, Raquel

Granell, Andre F. S. Amaral, Debbie Jarvis, John Henderson.

Writing – review & editing: Cosetta Minelli, Diana A. van der Plaat, Bénédicte Leynaert,

Raquel Granell, Andre F. S. Amaral, Miguel Pereira, Osama Mahmoud, James Potts, Nuala

A. Sheehan, Jack Bowden, John Thompson, Debbie Jarvis, George Davey Smith, John

Henderson.

References
1. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006; 355(21):2226–35. https://

doi.org/10.1056/NEJMra054308 PMID: 17124020

2. Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible? Lancet. 2015; 386

(9998):1075–85. https://doi.org/10.1016/S0140-6736(15)00156-7 PMID: 26382999

3. Almqvist C, Worm M, Leynaert B. Impact of gender on asthma in childhood and adolescence: a

GA2LEN review. Allergy. 2008; 63(1):47–57. https://doi.org/10.1111/j.1398-9995.2007.01524.x PMID:

17822448

4. Vink NM, Postma DS, Schouten JP, Rosmalen JG, Boezen HM. Gender differences in asthma develop-

ment and remission during transition through puberty: the TRacking Adolescents’ Individual Lives Sur-

vey (TRAILS) study. J Allergy Clin Immunol. 2010; 126(3):498–504.e1–6. https://doi.org/10.1016/j.jaci.

2010.06.018 PMID: 20816186

5. Zein JG, Erzurum SC. Asthma is different in women. Curr Allergy Asthma Rep. 2015; 15(6):28. https://

doi.org/10.1007/s11882-015-0528-y PMID: 26141573

6. McCleary N, Nwaru BI, Nurmatov UB, Critchley H, Sheikh A. Endogenous and exogenous sex steroid

hormones in asthma and allergy in females: a systematic review and meta-analysis. J Allergy Clin

Immunol. 2018; 141(4):1510–3.e8. https://doi.org/10.1016/j.jaci.2017.11.034 PMID: 29305316

7. Macsali F, Svanes C, Bjorge L, Omenaas ER, Gomez Real F. Respiratory health in women: from men-

arche to menopause. Exp Rev Resp Med. 2012; 6(2):187–200. https://doi.org/10.1586/ers.12.15 PMID:

22455491

8. Mumby HS, Elks CE, Li S, Sharp SJ, Khaw KT, Luben RN, et al. Mendelian randomisation study of

childhood BMI and early menarche. J Obes. 2011; 2011:180729. https://doi.org/10.1155/2011/180729

PMID: 21773002

9. Lieberoth S, Gade EJ, Brok J, Backer V, Thomsen SF. Age at menarche and risk of asthma: systematic

review and meta-analysis. J Asthma. 2014; 51(6):559–65. https://doi.org/10.3109/02770903.2014.

903966 PMID: 24628525

10. Day FR, Elks CE, Murray A, Ong KK, Perry JR. Puberty timing associated with diabetes, cardiovascular

disease and also diverse health outcomes in men and women: the UK Biobank study. Sci Rep. 2015;

5:11208. https://doi.org/10.1038/srep11208 PMID: 26084728

Age at puberty and risk of asthma: A Mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002634 August 7, 2018 11 / 14

http://journals.plos.org/plosmedicine/article/asset?unique&id=info:doi/10.1371/journal.pmed.1002634.s004
https://doi.org/10.1056/NEJMra054308
https://doi.org/10.1056/NEJMra054308
http://www.ncbi.nlm.nih.gov/pubmed/17124020
https://doi.org/10.1016/S0140-6736(15)00156-7
http://www.ncbi.nlm.nih.gov/pubmed/26382999
https://doi.org/10.1111/j.1398-9995.2007.01524.x
http://www.ncbi.nlm.nih.gov/pubmed/17822448
https://doi.org/10.1016/j.jaci.2010.06.018
https://doi.org/10.1016/j.jaci.2010.06.018
http://www.ncbi.nlm.nih.gov/pubmed/20816186
https://doi.org/10.1007/s11882-015-0528-y
https://doi.org/10.1007/s11882-015-0528-y
http://www.ncbi.nlm.nih.gov/pubmed/26141573
https://doi.org/10.1016/j.jaci.2017.11.034
http://www.ncbi.nlm.nih.gov/pubmed/29305316
https://doi.org/10.1586/ers.12.15
http://www.ncbi.nlm.nih.gov/pubmed/22455491
https://doi.org/10.1155/2011/180729
http://www.ncbi.nlm.nih.gov/pubmed/21773002
https://doi.org/10.3109/02770903.2014.903966
https://doi.org/10.3109/02770903.2014.903966
http://www.ncbi.nlm.nih.gov/pubmed/24628525
https://doi.org/10.1038/srep11208
http://www.ncbi.nlm.nih.gov/pubmed/26084728
https://doi.org/10.1371/journal.pmed.1002634


11. Hansen S, Probst-Hensch N, Bettschart R, Pons M, Leynaert B, Gomez Real F, et al. Early menarche

and new onset of asthma: results from the SAPALDIA cohort study. Maturitas. 2017; 101:57–63.

https://doi.org/10.1016/j.maturitas.2017.04.012 PMID: 28539170

12. Drosdzol A, Skrzypulec V, Wilk K, Nowosielski K. The influence of bronchial asthma on sexual matura-

tion of girls. J Physiol Pharmacol. 2007; 58(Suppl 5(Pt 1)):155–63. PMID: 18204126

13. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to under-

standing environmental determinants of disease? Int J Epidemiol. 2003; 32(1):1–22. PMID: 12689998

14. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in obser-

vational epidemiology. PLoS Med. 2008; 5(8):e177. https://doi.org/10.1371/journal.pmed.0050177

PMID: 18752343

15. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access

resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS

Med. 2015; 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779 PMID: 25826379

16. Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, et al. Genomic analyses iden-

tify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer

risk. Nat Genet. 2017; 49(6):834–41. https://doi.org/10.1038/ng.3841 PMID: 28436984

17. Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. Using multiple genetic

variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012; 21(3):223–

42. https://doi.org/10.1177/0962280210394459 PMID: 21216802

18. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using

genes as instruments for making causal inferences in epidemiology. Stat Med. 2008; 27(8):1133–63.

https://doi.org/10.1002/sim.3034 PMID: 17886233

19. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a

curated resource of SNP-trait associations. Nucleic Acids Res. 2014; 42(Database issue):D1001–6.

https://doi.org/10.1093/nar/gkt1229 PMID: 24316577

20. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat

Genet. 2008; 40(2):124–5. https://doi.org/10.1038/ng0208-124 PMID: 18227866

21. Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, et al. Genetic variation in LIN28B is associated

with the timing of puberty. Nat Genet. 2009; 41(6):729–33. https://doi.org/10.1038/ng.382 PMID:

19448623

22. Day FR, Bulik-Sullivan B, Hinds DA, Finucane HK, Murabito JM, Tung JY, et al. Shared genetic aetiol-

ogy of puberty timing between sexes and with health-related outcomes. Nat Commun. 2015; 6:8842.

https://doi.org/10.1038/ncomms9842 PMID: 26548314

23. Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared

genetic influences on 42 human traits. Nat Genet. 2016; 48(7):709–17. https://doi.org/10.1038/ng.3570

PMID: 27182965

24. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in

Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;

35(11):1880–906. https://doi.org/10.1002/sim.6835 PMID: 26661904

25. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide genetic data on

~500,000 UK Biobank participants. bioRxiv. 2017 Jul 20. https://doi.org/10.1101/166298

26. Palmer TM, Sterne JA, Harbord RM, Lawlor DA, Sheehan NA, Meng S, et al. Instrumental variable esti-

mation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epide-

miol. 2011; 173(12):1392–403. https://doi.org/10.1093/aje/kwr026 PMID: 21555716

27. Didelez V, Meng S, Sheehan NA. Assumptions of IV methods for observational epidemiology. Stat Sci.

2010; 25(1):22–40.

28. Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation

studies with summary data and a continuous outcome. Stat Med. 2015; 34(21):2926–40. https://doi.org/

10.1002/sim.6522 PMID: 25950993

29. Vansteelandt S, Bowden J, Babanezhad M, Goetghebeur E. On instrumental variables estimation of

causal odds ratios. Stat Sci. 2011; 26:403–22.

30. Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample summary data

Mendelian randomization using a robust adjusted profile score. arXiv. 2018 Feb 7. arXiv:

1801.09652v2.

31. Thompson JR, Minelli C, Del Greco MF. Mendelian randomization using public data from genetic con-

sortia. Int J Biostat. 2016; 12(2). https://doi.org/10.1515/ijb-2015-0074 PMID: 27092657

32. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic vari-

ants using summarized data. Genet Epidemiol. 2013; 37(7):658–65. https://doi.org/10.1002/gepi.21758

PMID: 24114802

Age at puberty and risk of asthma: A Mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002634 August 7, 2018 12 / 14

https://doi.org/10.1016/j.maturitas.2017.04.012
http://www.ncbi.nlm.nih.gov/pubmed/28539170
http://www.ncbi.nlm.nih.gov/pubmed/18204126
http://www.ncbi.nlm.nih.gov/pubmed/12689998
https://doi.org/10.1371/journal.pmed.0050177
http://www.ncbi.nlm.nih.gov/pubmed/18752343
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
https://doi.org/10.1038/ng.3841
http://www.ncbi.nlm.nih.gov/pubmed/28436984
https://doi.org/10.1177/0962280210394459
http://www.ncbi.nlm.nih.gov/pubmed/21216802
https://doi.org/10.1002/sim.3034
http://www.ncbi.nlm.nih.gov/pubmed/17886233
https://doi.org/10.1093/nar/gkt1229
http://www.ncbi.nlm.nih.gov/pubmed/24316577
https://doi.org/10.1038/ng0208-124
http://www.ncbi.nlm.nih.gov/pubmed/18227866
https://doi.org/10.1038/ng.382
http://www.ncbi.nlm.nih.gov/pubmed/19448623
https://doi.org/10.1038/ncomms9842
http://www.ncbi.nlm.nih.gov/pubmed/26548314
https://doi.org/10.1038/ng.3570
http://www.ncbi.nlm.nih.gov/pubmed/27182965
https://doi.org/10.1002/sim.6835
http://www.ncbi.nlm.nih.gov/pubmed/26661904
https://doi.org/10.1101/166298
https://doi.org/10.1093/aje/kwr026
http://www.ncbi.nlm.nih.gov/pubmed/21555716
https://doi.org/10.1002/sim.6522
https://doi.org/10.1002/sim.6522
http://www.ncbi.nlm.nih.gov/pubmed/25950993
https://doi.org/10.1515/ijb-2015-0074
http://www.ncbi.nlm.nih.gov/pubmed/27092657
https://doi.org/10.1002/gepi.21758
http://www.ncbi.nlm.nih.gov/pubmed/24114802
https://doi.org/10.1371/journal.pmed.1002634


33. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the

investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017; 36

(11):1783–802. https://doi.org/10.1002/sim.7221 PMID: 28114746

34. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estima-

tion and bias detection through Egger regression. Int J Epidemiol. 2015; 44(2):512–25. https://doi.org/

10.1093/ije/dyv080 PMID: 26050253

35. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization

with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016; 40(4):304–

14. https://doi.org/10.1002/gepi.21965 PMID: 27061298

36. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner: a database of

human genotype-phenotype associations. Bioinformatics. 2016; 32(20):3207–9. https://doi.org/10.

1093/bioinformatics/btw373 PMID: 27318201

37. Gage SH, Jones HJ, Burgess S, Bowden J, Davey Smith G, Zammit S, et al. Assessing causality in

associations between cannabis use and schizophrenia risk: a two-sample Mendelian randomization

study. Psychol Med. 2017; 47(5):971–80. https://doi.org/10.1017/S0033291716003172 PMID:

27928975

38. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan NA, Thompson JR. Assessing the suit-

ability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression:

the role of the I2 statistic. Int J Epidemiol. 2016; 45(6):1961–74. https://doi.org/10.1093/ije/dyw220

PMID: 27616674

39. Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to

conditioning on a collider. Int J Epidemiol. 2010; 39(2):417–20. https://doi.org/10.1093/ije/dyp334

PMID: 19926667

40. Draijer C, Hylkema MN, Boorsma CE, Klok PA, Robbe P, Timens W, et al. Sexual maturation protects

against development of lung inflammation through estrogen. Am J Physiol Lung Cell Mol Physiol. 2016;

310(2):L166–74. https://doi.org/10.1152/ajplung.00119.2015 PMID: 26608529

41. Jenkins MA, Dharmage SC, Flander LB, Douglass JA, Ugoni AM, Carlin JB, et al. Parity and decreased

use of oral contraceptives as predictors of asthma in young women. Clin Exp Allergy. 2006; 36(5):609–

13. https://doi.org/10.1111/j.1365-2222.2006.02475.x PMID: 16650045

42. Vrieze A, Postma DS, Kerstjens HA. Perimenstrual asthma: a syndrome without known cause or cure.

J Allergy Clin Immunol. 2003; 112(2):271–82. PMID: 12897732

43. Troisi RJ, Speizer FE, Willett WC, Trichopoulos D, Rosner B. Menopause, postmenopausal estrogen

preparations, and the risk of adult-onset asthma. A prospective cohort study. Am J Respir Crit Care

Med. 1995; 152(4 Pt 1):1183–8. https://doi.org/10.1164/ajrccm.152.4.7551368 PMID: 7551368

44. Mendle J, Turkheimer E, Emery RE. Detrimental psychological outcomes associated with early pubertal

timing in adolescent girls. Dev Rev. 2007; 27(2):151–71. https://doi.org/10.1016/j.dr.2006.11.001

PMID: 20740062

45. Wyshak G, Frisch RE. Evidence for a secular trend in age of menarche. N Engl J Med. 1982; 306

(17):1033–5. https://doi.org/10.1056/NEJM198204293061707 PMID: 7062994

46. Adams Hillard PJ. Menstruation in adolescents: what’s normal, what’s not. Ann N Y Acad Sci. 2008;

1135:29–35. https://doi.org/10.1196/annals.1429.022 PMID: 18574205

47. Fisher MM, Eugster EA. What is in our environment that effects puberty? Reprod Toxicol. 2014; 44:7–

14. https://doi.org/10.1016/j.reprotox.2013.03.012 PMID: 23602892

48. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030.

Int J Obes (Lond). 2008; 32(9):1431–7. https://doi.org/10.1038/ijo.2008.102 PMID: 18607383

49. Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: an

ovarian perspective. Front Neuroendocrinol. 2010; 31(4):420–39. https://doi.org/10.1016/j.yfrne.2010.

06.003 PMID: 20609371

50. Pierce MB, Leon DA. Age at menarche and adult BMI in the Aberdeen children of the 1950s cohort

study. Am J Clin Nutr. 2005; 82(4):733–9. https://doi.org/10.1093/ajcn/82.4.733 PMID: 16210700

51. Gong TT, Wu QJ, Vogtmann E, Lin B, Wang YL. Age at menarche and risk of ovarian cancer: a meta-

analysis of epidemiological studies. Int J Cancer. 2013; 132(12):2894–900. https://doi.org/10.1002/ijc.

27952 PMID: 23175139

52. He C, Zhang C, Hunter DJ, Hankinson SE, Buck Louis GM, Hediger ML, et al. Age at menarche and

risk of type 2 diabetes: results from 2 large prospective cohort studies. Am J Epidemiol. 2010; 171

(3):334–44. https://doi.org/10.1093/aje/kwp372 PMID: 20026580

53. Hsieh CC, Trichopoulos D, Katsouyanni K, Yuasa S. Age at menarche, age at menopause, height and

obesity as risk factors for breast cancer: associations and interactions in an international case-control

study. Int J Cancer. 1990; 46(5):796–800. PMID: 2228308

Age at puberty and risk of asthma: A Mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002634 August 7, 2018 13 / 14

https://doi.org/10.1002/sim.7221
http://www.ncbi.nlm.nih.gov/pubmed/28114746
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1093/ije/dyv080
http://www.ncbi.nlm.nih.gov/pubmed/26050253
https://doi.org/10.1002/gepi.21965
http://www.ncbi.nlm.nih.gov/pubmed/27061298
https://doi.org/10.1093/bioinformatics/btw373
https://doi.org/10.1093/bioinformatics/btw373
http://www.ncbi.nlm.nih.gov/pubmed/27318201
https://doi.org/10.1017/S0033291716003172
http://www.ncbi.nlm.nih.gov/pubmed/27928975
https://doi.org/10.1093/ije/dyw220
http://www.ncbi.nlm.nih.gov/pubmed/27616674
https://doi.org/10.1093/ije/dyp334
http://www.ncbi.nlm.nih.gov/pubmed/19926667
https://doi.org/10.1152/ajplung.00119.2015
http://www.ncbi.nlm.nih.gov/pubmed/26608529
https://doi.org/10.1111/j.1365-2222.2006.02475.x
http://www.ncbi.nlm.nih.gov/pubmed/16650045
http://www.ncbi.nlm.nih.gov/pubmed/12897732
https://doi.org/10.1164/ajrccm.152.4.7551368
http://www.ncbi.nlm.nih.gov/pubmed/7551368
https://doi.org/10.1016/j.dr.2006.11.001
http://www.ncbi.nlm.nih.gov/pubmed/20740062
https://doi.org/10.1056/NEJM198204293061707
http://www.ncbi.nlm.nih.gov/pubmed/7062994
https://doi.org/10.1196/annals.1429.022
http://www.ncbi.nlm.nih.gov/pubmed/18574205
https://doi.org/10.1016/j.reprotox.2013.03.012
http://www.ncbi.nlm.nih.gov/pubmed/23602892
https://doi.org/10.1038/ijo.2008.102
http://www.ncbi.nlm.nih.gov/pubmed/18607383
https://doi.org/10.1016/j.yfrne.2010.06.003
https://doi.org/10.1016/j.yfrne.2010.06.003
http://www.ncbi.nlm.nih.gov/pubmed/20609371
https://doi.org/10.1093/ajcn/82.4.733
http://www.ncbi.nlm.nih.gov/pubmed/16210700
https://doi.org/10.1002/ijc.27952
https://doi.org/10.1002/ijc.27952
http://www.ncbi.nlm.nih.gov/pubmed/23175139
https://doi.org/10.1093/aje/kwp372
http://www.ncbi.nlm.nih.gov/pubmed/20026580
http://www.ncbi.nlm.nih.gov/pubmed/2228308
https://doi.org/10.1371/journal.pmed.1002634


54. Lakshman R, Forouhi NG, Sharp SJ, Luben R, Bingham SA, Khaw KT, et al. Early age at menarche

associated with cardiovascular disease and mortality. J Clin Endocrinol Metab. 2009; 94(12):4953–60.

https://doi.org/10.1210/jc.2009-1789 PMID: 19880785

55. Macsali F, Real FG, Plana E, Sunyer J, Anto J, Dratva J, et al. Early age at menarche, lung function,

and adult asthma. Am J Respir Crit Care Med. 2011; 183(1):8–14. https://doi.org/10.1164/rccm.

200912-1886OC PMID: 20732985

56. Gill D, Sheehan NA, Wielscher M, Shrine N, Amaral AFS, Thompson JR, et al. Age at menarche and

lung function: a Mendelian randomization study. Eur J Epidemiol. 2017; 32(8):701–10. https://doi.org/

10.1007/s10654-017-0272-9 PMID: 28624884

57. Gill D, Brewer CF, Del Greco MF, Sivakumaran P, Bowden J, Sheehan NA, et al. Age at menarche and

adult body mass index: a Mendelian randomization study. Int J Obes (Lond). 2018 Feb 26. https://doi.

org/10.1038/s41366-018-0048-7 PMID: 29549348

58. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemio-

logical studies. Hum Mol Genet. 2014; 23(R1):R89–98. https://doi.org/10.1093/hmg/ddu328 PMID:

25064373

59. Harries ML, Walker JM, Williams DM, Hawkins S, Hughes IA. Changes in the male voice at puberty.

Arch Dis Child. 1997; 77(5):445–7. PMID: 9487971

60. Ong KK, Bann D, Wills AK, Ward K, Adams JE, Hardy R, et al. Timing of voice breaking in males associ-

ated with growth and weight gain across the life course. J Clin Endocrinol Metab. 2012; 97(8):2844–52.

https://doi.org/10.1210/jc.2011-3445 PMID: 22654120

Age at puberty and risk of asthma: A Mendelian randomisation study

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002634 August 7, 2018 14 / 14

https://doi.org/10.1210/jc.2009-1789
http://www.ncbi.nlm.nih.gov/pubmed/19880785
https://doi.org/10.1164/rccm.200912-1886OC
https://doi.org/10.1164/rccm.200912-1886OC
http://www.ncbi.nlm.nih.gov/pubmed/20732985
https://doi.org/10.1007/s10654-017-0272-9
https://doi.org/10.1007/s10654-017-0272-9
http://www.ncbi.nlm.nih.gov/pubmed/28624884
https://doi.org/10.1038/s41366-018-0048-7
https://doi.org/10.1038/s41366-018-0048-7
http://www.ncbi.nlm.nih.gov/pubmed/29549348
https://doi.org/10.1093/hmg/ddu328
http://www.ncbi.nlm.nih.gov/pubmed/25064373
http://www.ncbi.nlm.nih.gov/pubmed/9487971
https://doi.org/10.1210/jc.2011-3445
http://www.ncbi.nlm.nih.gov/pubmed/22654120
https://doi.org/10.1371/journal.pmed.1002634

