E. Scarselli, H. Ansuini, R. Cerino, R. M. Roccasecca, and S. Acali, The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus, EMBO J, vol.21, pp.5017-5025, 2002.

S. Yalaoui, T. Huby, J. Franetich, A. Gego, and A. Rametti, Scavenger receptor BI boosts hepatocyte permissiveness to Plasmodium infection, Cell Host Microbe, vol.4, p.18779054, 2008.

C. D. Rodrigues, M. Hannus, M. Prudêncio, C. Martin, and L. A. Gonçalves, Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection, Cell Host Microbe, vol.4, p.18779053, 2008.

O. Silvie, E. Rubinstein, J. Franetich, M. Prenant, and E. Belnoue, Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity, Nat Med, vol.9, p.12483205, 2003.

P. Pileri, Y. Uematsu, S. Campagnoli, G. Galli, and F. Falugi, Binding of hepatitis C virus to CD81, Science, vol.282, p.9794763, 1998.

M. Dorner, J. A. Horwitz, J. B. Robbins, W. T. Barry, and Q. Feng, A genetically humanized mouse model for hepatitis C virus infection, Nature, vol.474, p.21654804, 2011.

M. J. Farquhar, K. Hu, H. J. Harris, C. Davis, and C. L. Brimacombe, Hepatitis C virus induces CD81 and claudin-1 endocytosis, J Virol, vol.86, p.22318146, 2012.

S. Yalaoui, S. Zougbédé, S. Charrin, O. Silvie, and C. Arduise, Hepatocyte permissiveness to Plasmodium infection is conveyed by a short and structurally conserved region of the CD81 large extracellular domain, PLoS Pathog, vol.4, p.18389082, 2008.

M. Brazzoli, A. Bianchi, S. Filippini, A. Weiner, and Q. Zhu, CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes, J Virol, vol.82, p.18579606, 2008.

H. J. Harris, M. J. Farquhar, C. J. Mee, C. Davis, and G. M. Reynolds, CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry, J Virol, vol.82, p.18337570, 2008.

A. Ploss, M. J. Evans, V. A. Gaysinskaya, M. Panis, and H. You, Human occludin is a hepatitis C virus entry factor required for infection of mouse cells, Nature, vol.457, p.19182773, 2009.

M. J. Evans, T. Von-hahn, D. M. Tscherne, A. J. Syder, and M. Panis, Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry, Nature, vol.446, p.17325668, 2007.

Y. Baktash, A. Madhav, K. E. Coller, and G. Randall, Single Particle Imaging of Polarized Hepatoma Organoids upon Hepatitis C Virus Infection Reveals an Ordered and Sequential Entry Process, Cell Host Microbe, vol.23, p.29544098, 2018.

J. Lupberger, M. B. Zeisel, F. Xiao, C. Thumann, and I. Fofana, EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy, Nat Med, vol.17, p.21516087, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00705829

L. Zona, J. Lupberger, N. Sidahmed-adrar, C. Thumann, and H. J. Harris, HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex, Cell Host Microbe, vol.13, p.23498955, 2013.

M. Hsu, J. Zhang, M. Flint, C. Logvinoff, and C. Cheng-mayer, Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles, Proc Natl Acad Sci U S A, vol.100, p.12761383, 2003.

D. M. Tscherne, C. T. Jones, M. J. Evans, B. D. Lindenbach, and J. A. Mckeating, Time-and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry, J Virol, vol.80, p.16439530, 2006.

N. R. Sharma, G. Mateu, M. Dreux, A. Grakoui, and F. Cosset, Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion, J Biol Chem, vol.286, p.21737455, 2011.

O. A. Negrete, E. L. Levroney, H. C. Aguilar, A. Bertolotti-ciarlet, and R. Nazarian, EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus, Nature, vol.436, p.16007075, 2005.

D. Dutta, S. Chakraborty, C. Bandyopadhyay, V. Veettil, M. Ansari et al., EphrinA2 regulates clathrin mediated KSHV endocytosis in fibroblast cells by coordinating integrin-associated signaling and c-Cbl directed polyubiquitination, PLoS Pathog, vol.9, p.23874206, 2013.

C. Rorsman, M. Tsioumpekou, C. Heldin, and J. Lennartsson, The Ubiquitin Ligases c-Cbl and Cblb Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor ? (PDGFR?) Internalization and Signaling, J Biol Chem, vol.291, p.27048651, 2016.

L. Xu, Y. Zhang, X. Qu, C. X. Guo, and T. , E3 Ubiquitin Ligase Cbl-b Prevents Tumor Metastasis by Maintaining the Epithelial Phenotype in Multiple Drug-Resistant Gastric and Breast Cancer Cells, Neoplasia, vol.19, p.28334634, 2017.

S. A. Ettenberg, A. Magnifico, M. Cuello, M. M. Nau, and Y. R. Rubinstein, Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex, J Biol Chem, vol.276, p.11375397, 2001.

M. Veselits, A. Tanaka, S. Lipkowitz, S. O'neill, and R. Sciammas, Recruitment of Cbl-b to B cell antigen receptor couples antigen recognition to Toll-like receptor 9 activation in late endosomes, PLoS ONE, vol.9, p.24651487, 2014.

S. Pennock and Z. Wang, A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation, Mol Cell Biol, vol.28, p.18316398, 2008.

T. Y. Kim, P. F. Siesser, K. L. Rossman, D. Goldfarb, and K. Mackinnon, Substrate trapping proteomics reveals targets of the ?TrCP2/FBXW11 ubiquitin ligase, Mol Cell Biol, vol.35, p.25332235, 2015.

T. Eierhoff, E. R. Hrincius, U. Rescher, S. Ludwig, and C. Ehrhardt, The epidermal growth factor receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells, PLoS Pathog, vol.6, p.20844577, 2010.

M. Gordón-alonso, M. Yañez-mó, O. Barreiro, S. Alvarez, and M. A. Muñoz-fernández, Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion, J Immunol, vol.177, p.17015697, 2006.

D. Hochdorfer, L. Florin, C. Sinzger, and D. Lieber, Tetraspanin CD151 promotes initial events in human cytomegalovirus infection, J Virol, vol.90, p.27147745, 2016.

K. D. Scheffer, A. Gawlitza, G. A. Spoden, X. A. Zhang, and C. Lambert, Tetraspanin CD151 mediates papillomavirus type 16 endocytosis, J Virol, vol.87, p.23302890, 2013.

G. Spoden, L. Kühling, N. Cordes, B. Frenzel, and M. Sapp, Human papillomavirus types 16, 18, and 31 share similar endocytic requirements for entry, J Virol, vol.87, p.23616662, 2013.

Q. Li, C. Sodroski, B. Lowey, C. J. Schweitzer, and H. Cha, Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition, Proc Natl Acad Sci U S A, vol.113, p.27298373, 2016.

Y. Ono, T. C. Saido, and H. Sorimachi, Calpain research for drug discovery: challenges and potential, Nat Rev Drug Discov, vol.15, p.27833121, 2016.

A. Waghray, D. Wang, D. Mckinsey, R. L. Hayes, and K. Wang, Molecular cloning and characterization of rat and human calpain-5, Biochem Biophys Res Commun, vol.324, p.15464980, 2004.

B. D. Lindenbach and C. M. Rice, The ins and outs of hepatitis C virus entry and assembly, Nat Rev Microbiol, vol.11, p.24018384, 2013.

D. Paul, V. Madan, and R. Bartenschlager, Hepatitis C virus RNA replication and assembly: living on the fat of the land, Cell Host Microbe, vol.16, p.25525790, 2014.

L. Chatel-chaix and R. Bartenschlager, Dengue virus-and hepatitis C virus-induced replication and assembly compartments: the enemy inside-caught in the web, J Virol, vol.88, p.24623440, 2014.

G. Pasqual, J. M. Rojek, M. Masin, J. Chatton, and S. Kunz, Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport, PLoS Pathog, vol.7, p.21931550, 2011.

M. Mazzon and J. Mercer, Lipid interactions during virus entry and infection, Cell Microbiol, vol.16, p.25131438, 2014.

C. C. Scott, F. Vacca, and J. Gruenberg, Endosome maturation, transport and functions, Semin Cell Dev Biol, vol.31, p.24709024, 2014.

S. Rajesh, P. Sridhar, B. A. Tews, L. Fénéant, and L. Cocquerel, Structural basis of ligand interactions of the large extracellular domain of tetraspanin CD81, J Virol, vol.86, p.22740401, 2012.

A. Meola, A. Sbardellati, B. Bruni-ercole, M. Cerretani, and M. Pezzanera, Binding of hepatitis C virus E2 glycoprotein to CD81 does not correlate with species permissiveness to infection, J Virol, vol.74, p.10846074, 2000.

K. Kitadokoro, D. Bordo, G. Galli, R. Petracca, and F. Falugi, CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs, EMBO J, vol.20, p.11226150, 2001.

A. Kaushansky, A. N. Douglass, N. Arang, V. Vigdorovich, and N. Dambrauskas, Malaria parasites target the hepatocyte receptor EphA2 for successful host infection, Science, vol.350, p.26612952, 2015.

R. R. Akhouri, A. Sharma, P. Malhotra, and A. Sharma, Role of Plasmodium falciparum thrombospondin-related anonymous protein in host-cell interactions, Malar J, vol.7, p.18426606, 2008.

S. A. Ettenberg, Y. R. Rubinstein, P. Banerjee, M. M. Nau, and M. M. Keane, cbl-b inhibits EGF-receptor-induced apoptosis by enhancing ubiquitination and degradation of activated receptors, Mol Cell Biol Res Commun, vol.2, p.10542134, 1999.

D. Enard, L. Cai, C. Gwennap, and D. A. Petrov, Viruses are a dominant driver of protein adaptation in mammals, p.27187613, 2016.

A. Cherukuri, T. Shoham, H. W. Sohn, S. Levy, and S. Brooks, The tetraspanin CD81 is necessary for partitioning of coligated CD19/CD21-B cell antigen receptor complexes into signaling-active lipid rafts, J Immunol, vol.172, p.14688345, 2004.

G. M. Reynolds, H. J. Harris, A. Jennings, K. Hu, and J. Grove, Hepatitis C virus receptor expression in normal and diseased liver tissue, Hepatology, vol.47, p.18085708, 2008.

G. L. Law, M. J. Korth, A. G. Benecke, and M. G. Katze, Systems virology: host-directed approaches to viral pathogenesis and drug targeting, Nat Rev Microbiol, vol.11, p.23728212, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01543310

J. Cox and M. Mann, Quantitative, high-resolution proteomics for data-driven systems biology, Annu Rev Biochem, vol.80, p.21548781, 2011.

M. Kleine, M. Riemer, T. Krech, D. Detemple, and M. D. Jäger, Explanted diseased livers-a possible source of metabolic competent primary human hepatocytes, PLoS ONE, vol.9, p.24999631, 2014.

T. Pietschmann, A. Kaul, G. Koutsoudakis, A. Shavinskaya, and S. Kallis, Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras, Proc Natl Acad Sci U S A, vol.103, p.16651538, 2006.

J. M. Gottwein, T. Scheel, A. M. Hoegh, J. B. Lademann, and J. Eugen-olsen, Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses, Gastroenterology, vol.133, p.17983807, 2007.

J. M. Gottwein, T. Scheel, T. B. Jensen, J. B. Lademann, and J. C. Prentoe, Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs, Hepatology, vol.49, p.19148942, 2009.

T. B. Jensen, J. M. Gottwein, T. Scheel, A. M. Hoegh, and J. Eugen-olsen, Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection, J Infect Dis, vol.198, p.19032070, 2008.

T. Scheel, J. M. Gottwein, T. B. Jensen, J. C. Prentoe, and A. M. Hoegh, Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization, Proc Natl Acad Sci U S A, vol.105, p.18195353, 2008.

M. Yi, Y. Ma, J. Yates, and S. M. Lemon, Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus, J Virol, vol.81, p.17079282, 2007.

S. Reiss, I. Rebhan, P. Backes, I. Romero-brey, and H. Erfle, Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment, Cell Host Microbe, vol.9, p.21238945, 2011.

S. Haid, A. Novodomská, J. Gentzsch, C. Grethe, and S. Geuenich, A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes, Gastroenterology, vol.143, p.22465429, 2012.

G. Koutsoudakis, A. Kaul, E. Steinmann, S. Kallis, and V. Lohmann, Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses, J Virol, vol.80, p.16699011, 2006.

M. Hoffmann, Y. Wu, M. Gerber, M. Berger-rentsch, and B. Heimrich, Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity, J Gen Virol, vol.91, p.20631091, 2010.

S. Pfefferle, J. Schöpf, M. Kögl, C. C. Friedel, and M. A. Müller, The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors, PLoS Pathog, vol.7, p.22046132, 2011.

T. Pietschmann, M. Heinkelein, M. Heldmann, H. Zentgraf, and A. Rethwilm, Foamy virus capsids require the cognate envelope protein for particle export, J Virol, vol.73, p.10074106, 1999.

C. Schneider, R. A. Newman, D. R. Sutherland, U. Asser, and M. F. Greaves, A one-step purification of membrane proteins using a high efficiency immunomatrix, J Biol Chem, vol.257, p.6955305, 1982.

J. Cox, N. Neuhauser, A. Michalski, R. A. Scheltema, and J. V. Olsen, Andromeda: a peptide search engine integrated into the MaxQuant environment, J Proteome Res, vol.10, p.21254760, 2011.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, p.19029910, 2008.

J. Cox, M. Y. Hein, C. A. Luber, I. Paron, and N. Nagaraj, Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol Cell Proteomics, vol.13, p.24942700, 2014.

J. Cox and M. Mann, 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data, BMC Bioinformatics, vol.13, p.23176165, 2012.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, and D. Heller, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, p.25352553, 2015.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, and J. T. Wang, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, p.14597658, 2003.

M. E. Smoot, K. Ono, J. Ruscheinski, P. Wang, and T. Ideker, Cytoscape 2.8: new features for data integration and network visualization, Bioinformatics, vol.27, p.21149340, 2011.

S. Orchard, M. Ammari, B. Aranda, L. Breuza, and L. Briganti, The MIntAct project-IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res, vol.42, p.24234451, 2014.

N. Rieber, B. Knapp, R. Eils, and L. Kaderali, RNAither, an automated pipeline for the statistical analysis of high-throughput RNAi screens, Bioinformatics, vol.25, pp.678-679, 2009.

G. Manzoni, S. Briquet, V. Risco-castillo, C. Gaultier, and S. Topçu, A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites, Sci Rep, vol.4, p.24755823, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01359232

A. Mueller, N. Camargo, K. Kaiser, C. Andorfer, and U. Frevert, Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface, Proc Natl Acad Sci U S A, vol.102, p.15699336, 2005.

T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church, and E. Valen, CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing, Nucleic Acids Res, vol.42, p.24861617, 2014.

N. E. Sanjana, O. Shalem, and F. Zhang, Improved vectors and genome-wide libraries for CRISPR screening, Nat Methods, vol.11, p.25075903, 2014.

O. Shalem, N. E. Sanjana, and F. Zhang, High-throughput functional genomics using CRISPR-Cas9, Nat Rev Genet, vol.16, p.25854182, 2015.

G. Kärber, Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche, Archiv fuer experimentelle Pathologie und Pharmakologie, vol.162, pp.480-487, 1931.

C. Spearman, The method of "right and wrong cases" ("constant stimuli") without Gauss's formulae, Br J Psychol, vol.2, pp.227-242, 1908.

, CD81 interactors as HCV entry factors PLOS Pathogens, vol.35, p.35, 2018.