M. J. Thompson, N. Ninis, R. Perera, R. Mayon-white, C. Phillips et al., Clinical recognition of meningococcal disease in children and adolescents, Lancet Lond Engl, vol.367, pp.67932-67936, 2006.

D. M. Adcock, J. Brozna, and R. A. Marlar, Proposed classification and pathologic mechanisms of purpura fulminans and skin necrosis, Semin Thromb Hemost, vol.16, p.2281322, 1990.

S. N. Faust, P. Habibi, and R. S. Heyderman, Skin Manifestations of Meningococcal Infection, vol.17, pp.55-56, 2011.

D. Powars, R. Larsen, J. Johnson, T. Hulbert, T. Sun et al., Epidemic meningococcemia and purpura fulminans with induced protein C deficiency, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.17, pp.254-261, 1993.

V. C. D'agati and B. A. Marangoni, The Waterhouse-Friderichsen Syndrome, N Engl J Med, vol.232, pp.1-7, 1945.

J. Varon, K. Chen, and G. L. Sternbach, Rupert waterhouse and carl friderichsen: adrenal apoplexy, J Emerg Med, vol.16, p.9696186, 1998.

J. Guarner, P. W. Greer, A. Whitney, W. J. Shieh, M. Fisher et al., Pathogenesis and Diagnosis of Human Meningococcal Disease Using Immunohistochemical and PCR Assays, Am J Clin Pathol, vol.122, p.15491972, 2004.

C. Buysse, A. P. Oranje, E. Zuidema, J. A. Hazelzet, W. Hop et al., Long-term skin scarring and orthopaedic sequelae in survivors of meningococcal septic shock, Arch Dis Child, vol.94, p.19147623, 2009.

M. Sadarangani, D. W. Scheifele, S. A. Halperin, W. Vaudry, L. Saux et al., Outcomes of invasive meningococcal disease in adults and children in Canada between 2002 and 2011: a prospective cohort study, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.60, p.25605282, 2015.

D. J. Stearns-kurosawa, S. Kurosawa, J. S. Mollica, G. L. Ferrell, and C. T. Esmon, The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex, Proc Natl Acad Sci U S A, vol.93, p.8816778, 1996.

F. B. Taylor, D. J. Stearns-kurosawa, S. Kurosawa, G. Ferrell, A. C. Chang et al., The endothelial cell protein C receptor aids in host defense against Escherichia coli sepsis, Blood, vol.95, p.10688824, 2000.

F. B. Taylor, G. T. Peer, M. S. Lockhart, G. Ferrell, and C. T. Esmon, Endothelial cell protein C receptor plays an important role in protein C activation in vivo, Blood, vol.97, p.11238108, 2001.

W. Li, X. Zheng, J. Gu, J. Hunter, G. L. Ferrell et al., Overexpressing endothelial cell protein C receptor alters the hemostatic balance and protects mice from endotoxin, J Thromb Haemost JTH, vol.3, p.15978090, 2005.

L. Pepler, P. Yu, D. J. Dwivedi, B. L. Trigatti, and P. C. Liaw, Characterization of mice harboring a variant of EPCR with impaired ability to bind protein C: novel role of EPCR in hematopoiesis, Blood, vol.126, p.26045607, 2015.

S. N. Faust, M. Levin, O. B. Harrison, R. D. Goldin, M. S. Lockart et al., Dysfunction of endothelial protein C activation in severe meningococcal sepsis, N Engl J Med, vol.345, p.11496851, 2001.

M. N. Sotto, B. Langer, S. Hoshino-shimizu, and T. De-brito, Pathogenesis of cutaneous lesions in acute meningococcemia in humans: light, immunofluorescent, and electron microscopic studies of skin biopsy specimens, J Infect Dis, vol.133, p.816975, 1976.

O. B. Harrison, B. D. Robertson, S. N. Faust, M. A. Jepson, R. D. Goldin et al., Analysis of pathogenhost cell interactions in purpura fulminans: expression of capsule, type IV pili, and PorA by Neisseria meningitidis in vivo, Infect Immun, vol.70, p.12183570, 2002.

E. Mairey, A. Genovesio, E. Donnadieu, C. Bernard, F. Jaubert et al., Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood-brain barrier, J Exp Med, vol.203, p.16864659, 2006.

N. Dupin, H. , A. , C. , M. Chanal et al., Chronic Meningococcemia Cutaneous Lesions Involve Meningococcal Perivascular Invasion Through the Remodeling of Endothelial Barriers, Clin Infect Dis, vol.54, p.22412064, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02085535

Y. Delgado-jiménez, J. Fraga, C. Requena, L. Requena, M. Aragües et al., Acute bacterial septic vasculopathy, Int J Dermatol, vol.52, p.23231414, 2013.

S. C. Bernard, N. Simpson, O. Join-lambert, C. Federici, M. Laran-chich et al., Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization, Nat Med, vol.20, p.24880614, 2014.

J. Berry and V. Pelicic, Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives, FEMS Microbiol Rev, vol.39, p.25793961, 2015.

M. Coureuil, G. Mikaty, F. Miller, H. Lecuyer, C. Bernard et al., Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium, Science, vol.325, p.19520910, 2009.

M. Coureuil, H. Lecuyer, M. G. Scott, C. Boularan, H. Enslen et al., Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium, Cell, vol.143, p.21183077, 2010.

H. Lécuyer, X. Nassif, and M. Coureuil, Two strikingly different signaling pathways are induced by meningococcal type IV pili on endothelial and epithelial cells, Infect Immun, vol.80, p.22064711, 2012.

D. Qu, Y. Wang, N. L. Esmon, and C. T. Esmon, Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17, J Thromb Haemost JTH, vol.5, p.17155946, 2007.

D. R. Edwards, M. M. Handsley, and C. J. Pennington, The ADAM metalloproteinases, Mol Aspects Med, vol.29, p.18762209, 2008.

I. Kleino, R. M. Ortiz, and A. Huovila, ADAM15 gene structure and differential alternative exon use in human tissues, BMC Mol Biol, vol.8, p.17937806, 2007.

L. Gall, S. M. Bobé, P. Reiss, K. Horiuchi, K. Niu et al., ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha, Mol Biol Cell, vol.20, p.19158376, 2009.

A. Ludwig, C. Hundhausen, M. H. Lambert, N. Broadway, R. C. Andrews et al., Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules, Comb Chem High Throughput Screen, vol.8, p.15777180, 2005.

D. E. Joyce, L. Gelbert, A. Ciaccia, B. Dehoff, and B. W. Grinnell, Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis, J Biol Chem, vol.276, p.11278252, 2001.

L. O. Mosnier and J. H. Griffin, Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease-activated receptor-1 and endothelial cell protein C receptor, Biochem J, vol.373, p.12683950, 2003.

T. Cheng, D. Liu, J. H. Griffin, J. A. Fernández, F. Castellino et al., Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective, Nat Med, vol.9, p.12563316, 2003.

L. O. Mosnier, R. K. Sinha, L. Burnier, E. A. Bouwens, and J. H. Griffin, Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46, Blood, vol.120, p.23149848, 2012.

. Bouwens-e-a.-m, F. Stavenuiter, and L. O. Mosnier, Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway, J Thromb Haemost JTH, vol.11, issue.1, p.23809128, 2013.

C. Feistritzer, Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation, Blood, vol.105, p.15626732, 2005.

J. H. Finigan, S. M. Dudek, P. A. Singleton, E. T. Chiang, J. R. Jacobson et al., Activated Protein C Mediates Novel Lung Endothelial Barrier Enhancement: ROLE OF SPHINGOSINE 1-PHOSPHATE RECEPTOR TRANSACTIVATION, J Biol Chem, vol.280, p.15710622, 2005.

N. Bir, M. Lafargue, M. Howard, A. Goolaerts, J. Roux et al., Cytoprotective-Selective Activated Protein C Attenuates Pseudomonas aeruginosa-Induced Lung Injury in Mice, Am J Respir Cell Mol Biol, vol.45, p.21257925, 2011.

N. Lerolle, A. Carlotti, K. Melican, F. Aubey, M. Pierrot et al., Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans, Am J Respir Crit Care Med, vol.188, p.23924269, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01389220

W. Li, X. Zheng, J. Gu, G. L. Ferrell, M. Brady et al., Extraembryonic expression of EPCR is essential for embryonic viability, Blood, vol.106, p.15956290, 2005.

A. Von-drygalski, C. Furlan-freguia, W. Ruf, J. H. Griffin, and L. O. Mosnier, Organ-specific protection against lipopolysaccharide-induced vascular leak is dependent on the endothelial protein C receptor, Arterioscler Thromb Vasc Biol, vol.33, p.23393392, 2013.

K. Horiuchi, L. Gall, S. Schulte, M. Yamaguchi, T. Reiss et al., Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx

, Mol Biol Cell, vol.18, p.17079736, 2007.

B. Schulz, J. Pruessmeyer, T. Maretzky, A. Ludwig, C. P. Blobel et al., ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin, Circ Res, vol.102, p.18420943, 2008.

B. Ponnuchamy and R. A. Khalil, Role of ADAMs in endothelial cell permeability: cadherin shedding and leukocyte rolling, Circ Res, vol.102, p.18497310, 2008.

S. Flemming, N. Burkard, M. Renschler, F. Vielmuth, M. Meir et al., Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis, Cardiovasc Res, vol.107, p.25975259, 2015.

I. Inoshima, N. Inoshima, G. A. Wilke, M. E. Powers, K. M. Frank et al., A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice, Nat Med, vol.17, p.21926978, 2011.

M. E. Powers, H. K. Kim, Y. Wang, B. Wardenburg, and J. , ADAM10 mediates vascular injury induced by Staphylococcus aureus ?-hemolysin, J Infect Dis, vol.206, p.22474035, 2012.

S. Wetzel, L. Seipold, and P. Saftig, The metalloproteinase ADAM10: A useful therapeutic target?, Biochim Biophys Acta BBA-Mol Cell Res, vol.1864, p.28624438, 2017.

T. Seegar, L. B. Killingsworth, N. Saha, P. A. Meyer, D. Patra et al., Structural Basis for Regulated Proteolysis by the ?-Secretase ADAM10, Cell, vol.171, p.29224781, 2017.

D. Valle, P. Pavani, G. D'angelo, and A. , The protein C pathway and sepsis, Thromb Res, vol.129, p.22154246, 2012.

G. R. Bernard, J. L. Vincent, P. F. Laterre, S. P. Larosa, J. F. Dhainaut et al., Efficacy and safety of recombinant human activated protein C for severe sepsis, N Engl J Med, vol.344, p.11236773, 2001.

V. M. Ranieri, B. T. Thompson, P. S. Barie, J. Dhainaut, I. S. Douglas et al., Drotrecogin alfa (activated) in adults with septic shock, N Engl J Med, vol.366, p.22616830, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00865183

A. Donati, E. Damiani, L. Botticelli, E. Adrario, M. R. Lombrano et al., The aPC treatment improves microcirculation in severe sepsis/septic shock syndrome, BMC Anesthesiol, vol.13, p.24070065, 2013.

A. C. Kalil and S. P. Larosa, Effectiveness and safety of drotrecogin alfa (activated) for severe sepsis: a metaanalysis and metaregression, Lancet Infect Dis, vol.12, issue.12, p.22809883, 2012.

E. Gayat, L. Lemasle, and D. Payen, Drotrecogin alfa (activated) in severe sepsis, Lancet Infect Dis, vol.13, p.23347627, 2013.

G. E. Rivard, M. David, C. Farrell, and H. P. Schwarz, Treatment of purpura fulminans in meningococcemia with protein C concentrate, J Pediatr, vol.126, p.7699550, 1995.

O. P. Smith, B. White, D. Vaughan, M. Rafferty, L. Claffey et al., Use of protein-C concentrate, heparin, and haemodiafiltration in meningococcus-induced purpura fulminans, Lancet Lond Engl, vol.350, pp.1590-1593, 1997.

E. Rintala, O. P. Seppälä, P. Kotilainen, V. Pettilä, and V. Rasi, Protein C in the treatment of coagulopathy in meningococcal disease, Crit Care Med, vol.26, p.9590329, 1998.

W. Kreuz, A. Veldman, C. Escuriola-ettingshausen, W. Schneider, and T. Beeg, Protein-C concentrate for meningococcal purpura fulminans, Lancet Lond Engl, vol.351, pp.986-987, 1998.

C. E. Ettingshausen, A. Veldmann, T. Beeg, W. Schneider, G. Jäger et al., Replacement therapy with protein C concentrate in infants and adolescents with meningococcal sepsis and purpura fulminans

, Semin Thromb Hemost, vol.25, p.10632475, 1999.

L. Alberio, B. Lämmle, and C. T. Esmon, Protein C replacement in severe meningococcemia: rationale and clinical experience, Clin Infect Dis Off Publ Infect Dis Soc Am, vol.32, p.11303270, 2001.

B. White, W. Livingstone, C. Murphy, A. Hodgson, M. Rafferty et al., An open-label study of the role of adjuvant hemostatic support with protein C replacement therapy in purpura fulminans-associated meningococcemia, Blood, vol.96, p.11090052, 2000.

F. Fourrier, F. Leclerc, A. K. Sadik, A. Jourdain, M. Tournoys et al., Combined antithrombin and protein C supplementation in meningococcal purpura fulminans: a pharmacokinetic study, Intensive Care Med, vol.29, p.12761614, 2003.

E. D. De-kleijn, R. De-groot, C. E. Hack, P. Mulder, W. Engl et al., Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: a randomized, double-blinded, placebo-controlled, dose-finding study, Crit Care Med, vol.31, p.12794428, 2003.

A. Veldman, D. Fischer, F. Y. Wong, W. Kreuz, M. Sasse et al., Human protein C concentrate in the treatment of purpura fulminans: a retrospective analysis of safety and outcome in 94 pediatric patients, Crit Care Lond Engl, vol.14, p.20723255, 2010.

X. Nassif, J. Lowy, P. Stenberg, P. O'gaora, A. Ganji et al., Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells, Mol Microbiol, vol.8, p.8332064, 1993.

X. Nassif, J. L. Beretti, J. Lowy, P. Stenberg, P. O'gaora et al., Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells, Proc Natl Acad Sci U A, vol.91, pp.3769-73, 1994.

M. Virji, K. Makepeace, D. J. Ferguson, M. Achtman, and E. R. Moxon, Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells, Mol Microbiol, vol.10, p.7968528, 1993.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, p.23287718, 2013.