C. J. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman et al., Global malaria mortality between 1980 and 2010: a systematic analysis, Lancet, vol.379, issue.9814, p.22305225, 2012.

A. Ghosh, M. J. Edwards, and M. Jacobs-lorena, The journey of the malaria parasite in the mosquito: hopes for the new century, Parasitol Today, vol.16, issue.5, p.10782078, 2000.

S. Wang and M. Jacobs-lorena, Genetic approaches to interfere with malaria transmission by vector mosquitoes, Trends Biotechnol, vol.31, issue.3, p.23395485, 2013.

S. K. Sreenivasamurthy, G. Dey, M. Ramu, M. Kumar, M. K. Gupta et al., A compendium of molecules involved in vector-pathogen interactions pertaining to malaria, Malar J, vol.12, p.23802619, 2013.

M. A. Osta, G. K. Christophides, and F. C. Kafatos, Effects of mosquito genes on Plasmodium development, Science, vol.303, issue.5666, p.15044804, 2004.

G. K. Christophides, Transgenic mosquitoes and malaria transmission, Cell Microbiol, vol.7, issue.3, p.15679836, 2005.

A. M. Mendes, T. Schlegelmilch, A. Cohuet, P. Awono-ambene, D. Iorio et al., Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa, PLoS Pathog, vol.4, issue.5, p.18483558, 2008.

R. R. Dinglasan, D. E. Kalume, S. M. Kanzok, A. K. Ghosh, O. Muratova et al., Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen, Proc Natl Acad Sci, vol.104, issue.33, p.17673553, 2007.

S. Basu, A. Aryan, J. M. Overcash, G. H. Samuel, M. A. Anderson et al., Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti, Proc Natl Acad Sci U S A, vol.112, issue.13, p.25775608, 2015.

S. Dong, J. Lin, N. L. Held, R. J. Clem, A. L. Passarelli et al., Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti, PLoS One, vol.10, issue.3, p.25815482, 2015.

K. E. Kistler, L. B. Vosshall, and B. J. Matthews, Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti, Cell Rep, vol.11, issue.1, p.25818303, 2015.

A. B. Hall, S. Basu, X. Jiang, Y. Qi, V. A. Timoshevskiy et al., A maledetermining factor in the mosquito Aedes aegypti, Science, vol.348, issue.6240, p.25999371, 2015.

K. Itokawa, O. Komagata, S. Kasai, K. Ogawa, and T. Tomita, Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies, Sci Rep, vol.6, p.27095599, 2016.

L. Grigoraki, A. Puggioli, K. Mavridis, V. Douris, M. Montanari et al., Striking diflubenzuron resistance in Culex pipiens, the prime vector of West Nile Virus, Sci Rep, vol.7, issue.1, p.28916816, 2017.

V. M. Gantz, N. Jasinskiene, O. Tatarenkova, A. Fazekas, V. M. Macias et al., Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi, Proc Natl Acad Sci U S A, vol.112, issue.49, p.26598698, 2015.

A. Hammond, R. Galizi, K. Kyrou, A. Simoni, C. Siniscalchi et al., A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat Biotechnol, vol.34, issue.1, p.26641531, 2016.

A. M. Hammond, K. Kyrou, M. Bruttini, A. North, R. Galizi et al., The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito, PLoS Genet, vol.13, issue.10, p.28976972, 2017.

Y. Dong, R. Aguilar, Z. Xi, E. Warr, E. Mongin et al., Anopheles gambiae immune responses to human and rodent Plasmodium parasite species, PLoS Pathog, vol.2, issue.6, p.16789837, 2006.

Y. Dong and G. Dimopoulos, Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites, J Biol Chem, vol.284, issue.15, p.19193639, 2009.

M. L. Simoes, Y. Dong, A. Hammond, A. Hall, A. Crisanti et al., The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression, Dev Comp Immunol, vol.67, p.27667688, 2017.

G. Zhang, G. Niu, C. M. Franca, Y. Dong, X. Wang et al., Anopheles Midgut FREP1 Mediates Plasmodium Invasion, J Biol Chem, vol.290, issue.27, p.25991725, 2015.

G. Niu, B. Wang, G. Zhang, J. B. King, R. H. Cichewicz et al., Targeting mosquito FREP1 with a fungal metabolite blocks malaria transmission, Sci Rep, vol.5, p.14694, 2015.

G. Niu, A. C. Franc, G. Zhang, W. Roobsoong, W. Nguitragool et al., The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen, J Biol Chem, vol.292, issue.28, p.28533429, 2017.

P. A. Papathanos, N. Windbichler, M. Menichelli, A. Burt, and A. Crisanti, The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies, BMC Mol Biol, vol.10, p.65, 2009.

Y. Dong, S. Das, C. Cirimotich, J. A. Souza-neto, K. J. Mclean et al., Engineered anopheles immunity to Plasmodium infection, PLoS Pathog, vol.7, issue.12, p.22216006, 2011.

N. F. Lobo, J. R. Clayton, M. J. Fraser, F. C. Kafatos, and F. H. Collins, High efficiency germ-line transformation of mosquitoes, Nat Protoc, vol.1, issue.3, p.17406416, 2006.

Y. Dong, C. M. Cirimotich, A. Pike, R. Chandra, and G. Dimopoulos, Anopheles NF-kappaB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam, Cell Host Microbe, vol.12, issue.4, p.23084919, 2012.

G. Volohonsky, O. Terenzi, J. Soichot, D. A. Naujoks, T. Nolan et al., Tools for Anopheles gambiae Transgenesis. G3 (Bethesda), vol.5, p.25869647, 2015.

C. Drexler, A. Watkins-de-jong, L. Antonova, Y. Pakpour, N. Ziegler et al., Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes, PLoS Pathog, vol.6, issue.7, p.20664791, 2010.

P. A. Eckhoff, E. A. Wenger, H. C. Godfray, and A. Burt, Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics, Proc Natl Acad Sci, vol.114, issue.2, p.28028208, 2017.

S. P. Sinkins and F. Gould, Gene drive systems for insect disease vectors, Nat Rev Genet, vol.7, issue.6, pp.427-462, 2006.

A. M. Blagborough, T. S. Churcher, L. M. Upton, A. C. Ghani, P. W. Gething et al., Transmission-blocking interventions eliminate malaria from laboratory populations, Nat Commun, vol.4, p.1812, 2013.

H. Godfray, A. North, and A. Burt, How driving endonuclease genes can be used to combat pests and disease vectors, BMC Biol, vol.15, issue.1, p.28893259, 2017.

F. H. Rodgers, M. Gendrin, C. Wyer, and G. K. Christophides, Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes, PLoS Pathog, vol.13, issue.5, p.28545061, 2017.

J. Lu, C. Teh, U. Kishore, and K. B. Reid, Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system, Biochim Biophys Acta, vol.1572, issue.2-3, p.12223281, 2002.

T. Fujita, Evolution of the lectin-complement pathway and its role in innate immunity, Nat Rev Immunol, vol.2, issue.5, pp.346-53, 2002.

S. M. Zhang, H. Nian, Y. Zeng, and R. J. Dejong, Fibrinogen-bearing protein genes in the snail Biomphalaria glabrata: Characterization of two novel genes and expression studies during ontogenesis and trematode infection, Dev Comp Immunol, vol.32, issue.10, p.18417215, 2008.

S. M. Zhang, Y. Zeng, and E. S. Loker, Expression profiling and binding properties of fibrinogen-related proteins (FREPs), plasma proteins from the schistosome snail host Biomphalaria glabrata, Innate Immun, vol.14, issue.3, pp.175-89, 2008.

Y. Zhang, X. Xu, D. Shen, J. Song, M. Guo et al., Anticoagulation factor I, a snaclec (snake C-type lectin) from Agkistrodon acutus venom binds to FIX as well as FX: Ca2+ induced binding data, Toxicon, vol.59, issue.7-8, p.22445822, 2012.

J. S. Chen, Y. S. Dagdas, B. P. Kleinstiver, M. M. Welch, A. A. Sousa et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, 2017.

R. L. Frock, J. Hu, R. M. Meyers, Y. J. Ho, E. Kii et al., Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases, Nat Biotechnol, vol.33, issue.2, p.25503383, 2015.

Y. Fu, J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat Biotechnol, vol.31, issue.9, p.23792628, 2013.

Z. Xue, M. Wu, K. Wen, M. Ren, L. Long et al., CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila. G3 (Bethesda), vol.4, p.25193494, 2014.

A. Pike, Y. Dong, N. B. Dizaji, A. Gacita, E. F. Mongodin et al., Changes in the microbiota cause genetically modified Anopheles to spread in a population, Science, vol.357, issue.6358, p.28963254, 2017.

J. M. Meredith, A. Underhill, C. C. Mcarthur, and P. Eggleston, Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase, PLoS One, vol.8, issue.3, p.23516619, 2013.

C. Mitri, J. C. Jacques, I. Thiery, M. M. Riehle, J. Xu et al., Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species, PLoS Pathog, vol.5, issue.9, p.1000576, 2009.

S. Kumar, A. Molina-cruz, L. Gupta, J. Rodrigues, and C. Barillas-mury, A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae, Science, vol.327, issue.5973, p.20223948, 2010.

C. M. Cirimotich, Y. Dong, A. M. Clayton, S. L. Sandiford, J. A. Souza-neto et al., Natural microbemediated refractoriness to Plasmodium infection in Anopheles gambiae, Science, vol.332, issue.6031, p.21566196, 2011.