J. W. Collins, K. M. Keeney, V. F. Crepin, V. A. Rathinam, and K. A. Fitzgerald, Citrobacter rodentium: infection, inflammation and the microbiota, Nat Rev Microbiol, vol.12, p.25088150, 2014.

N. Kamada, K. Sakamoto, S. U. Seo, M. Y. Zeng, and Y. G. Kim, Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination, Cell Host Microbe, vol.17, p.25936799, 2015.

S. W. Barthold, The microbiology of transmissible murine colonic hyperplasia, Lab Anim Sci, vol.30, p.7052371, 1980.

E. Johnson and S. W. Barthold, The ultrastructure of transmissible murine colonic hyperplasia, Am J Pathol, vol.97, p.525674, 1979.

B. C. Roy, D. Subramaniam, I. Ahmed, V. R. Jala, and C. M. Hester, Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2, Oncogene, vol.34, p.25486432, 2015.

S. L. Lebeis, B. Bommarius, C. A. Parkos, M. A. Sherman, and D. Kalman, TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium, Journal of immunology, vol.179, pp.566-577, 2007.

D. L. Gibson, C. Ma, C. M. Rosenberger, K. S. Bergstrom, and Y. Valdez, Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis, Cell Microbiol, vol.10, p.17910742, 2008.

M. A. Khan, C. Ma, L. A. Knodler, Y. Valdez, and C. M. Rosenberger, Toll-like receptor 4 contributes to colitis development but not to host defense during Citrobacter rodentium infection in mice, Infect Immun, vol.74, p.16622187, 2006.

N. Kayagaki, S. Warming, M. Lamkanfi, L. Vande-walle, and S. Louie, Non-canonical inflammasome activation targets caspase-11, Nature, vol.479, p.22002608, 2011.

Z. Liu, M. H. Zaki, P. Vogel, P. Gurung, and B. B. Finlay, Role of inflammasomes in host defense against Citrobacter rodentium infection, J Biol Chem, vol.287, p.22461621, 2012.

N. Satoh-takayama, C. A. Vosshenrich, S. Lesjean-pottier, S. Sawa, and M. Lochner, Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense, Immunity, vol.29, p.19084435, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01402754

Y. Zheng, P. A. Valdez, D. M. Danilenko, Y. Hu, and S. M. Sa, Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens, Nat Med, vol.14, pp.282-289, 2008.

I. Backert, S. B. Koralov, S. Wirtz, V. Kitowski, and U. Billmeier, STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis, Journal of immunology, vol.193, pp.3779-3791, 2014.

X. Guo, J. Qiu, T. Tu, X. Yang, and L. Deng, Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection, Immunity, vol.40, p.24412612, 2014.

P. R. Giacomin, R. H. Moy, M. Noti, L. C. Osborne, and M. C. Siracusa, Epithelial-intrinsic IKKalpha expression regulates group 3 innate lymphoid cell responses and antibacterial immunity, J Exp Med, vol.212, p.26371187, 2015.

Y. S. Lee, H. Yang, J. Y. Yang, Y. Kim, and S. H. Lee, Interleukin-1 (IL-1) signaling in intestinal stromal cells controls KC/ CXCL1 secretion, which correlates with recruitment of IL-22-secreting neutrophils at early stages of Citrobacter rodentium infection, Infect Immun, vol.83, p.26034212, 2015.

R. Mundy, T. T. Macdonald, G. Dougan, G. Frankel, and S. Wiles, Citrobacter rodentium of mice and man, Cell Microbiol, vol.7, p.16309456, 2005.

C. N. Berger, V. F. Crepin, T. I. Roumeliotis, J. C. Wright, and D. Carson, Citrobacter rodentium Subverts ATP Flux and Cholesterol Homeostasis in Intestinal Epithelial Cells In Vivo, Cell Metab, vol.26, p.28988824, 2017.

L. Pinaud, P. J. Sansonetti, and A. Phalipon, Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors, Trends Microbiol, p.29477730, 2018.

J. S. Pearson, C. Giogha, W. Fok-lung, T. Hartland, and E. L. , The Genetics of Enteropathogenic Escherichia coli Virulence, Annual review of genetics, vol.50, p.27893961, 2016.

M. Kim, M. Ogawa, Y. Fujita, Y. Yoshikawa, and T. Nagai, Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment, Nature, vol.459, p.19489119, 2009.

T. Tobe, S. A. Beatson, H. Taniguchi, H. Abe, and C. M. Bailey, An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination, Proc Natl Acad Sci U S A, vol.103, p.16990433, 2006.

A. Ale, V. F. Crepin, J. W. Collins, N. Constantinou, and M. Habibzay, Model of Host-Pathogen Interaction Dynamics Links In Vivo Optical Imaging and Immune Responses, Infect Immun, vol.85, 2017.

M. Sobecki, K. Mrouj, A. Camasses, N. Parisis, and N. E. , The cell proliferation antigen Ki-67 organises heterochromatin, Elife, vol.5, p.26949251, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01356776

C. A. Lopez, B. M. Miller, F. Rivera-chavez, E. M. Velazquez, and M. X. Byndloss, Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration, Science, vol.353, p.27634526, 2016.

V. F. Crepin, M. Habibzay, I. Glegola-madejska, M. Guenot, and J. W. Collins, Tir Triggers Expression of CXCL1 in Enterocytes and Neutrophil Recruitment during Citrobacter rodentium Infection, Infect Immun, vol.83, p.26077760, 2015.

E. Hart, J. Yang, M. Tauschek, M. Kelly, and M. J. Wakefield, RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium, Infect Immun, vol.76, p.18765720, 2008.

M. J. Pallen and B. W. Wren, The HtrA family of serine proteases, Mol Microbiol, vol.26, p.9383148, 1997.

V. Schenten, C. Melchior, N. Steinckwich, E. J. Tschirhart, and S. Brechard, Sphingosine kinases regulate NOX2 activity via p38 MAPK-dependent translocation of S100A8/A9, J Leukoc Biol, vol.89, p.21233411, 2011.

M. J. Rodriguez-colman, M. Schewe, M. Meerlo, E. Stigter, and J. Gerrits, Interplay between metabolic identities in the intestinal crypt supports stem cell function, Nature, vol.543, p.28273069, 2017.

C. L. Zindl, J. F. Lai, Y. K. Lee, C. L. Maynard, and S. N. Harbour, IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis, Proc Natl Acad Sci U S A, vol.110, p.23781104, 2013.

C. F. Urban, D. Ermert, M. Schmid, U. Abu-abed, and C. Goosmann, Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans, PLoS Pathog, vol.5, 2009.

K. Narui, N. Noguchi, A. Saito, K. Kakimi, and N. Motomura, Anti-infectious activity of tryptophan metabolites in the L-tryptophan-L-kynurenine pathway, Biol Pharm Bull, vol.32, p.19122278, 2009.

N. Wittkopf, G. Pickert, U. Billmeier, M. Mahapatro, and S. Wirtz, Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection, PloS one, vol.10, p.25799189, 2015.

M. M. Sherry, A. Reeves, J. K. Wu, and B. H. Cochran, STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells, Stem Cells, vol.27, p.19658181, 2009.

G. Pickert, C. Neufert, M. Leppkes, Y. Zheng, and N. Wittkopf, STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing, J Exp Med, vol.206, p.19564350, 2009.

A. Mitra, S. K. Raychaudhuri, and S. P. Raychaudhuri, IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade, Cytokine, vol.60, p.22840496, 2012.

C. Ryckman, K. Vandal, P. Rouleau, M. Talbot, and P. A. Tessier, Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion, Journal of immunology, vol.170, pp.3233-3242, 2003.

P. Nighot, R. Al-sadi, M. Rawat, S. Guo, and D. M. Watterson, Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis, Am J Physiol Gastrointest Liver Physiol, vol.309, p.26514773, 2015.

R. Sumagin and C. A. Parkos, Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration, Tissue Barriers, vol.3, p.25838976, 2015.

H. L. Cash, C. V. Whitham, C. L. Behrendt, and L. V. Hooper, Symbiotic bacteria direct expression of an intestinal bactericidal lectin, Science, vol.313, p.16931762, 2006.

S. Vaishnava, M. Yamamoto, K. M. Severson, K. A. Ruhn, and X. Yu, The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine, Science, vol.334, p.21998396, 2011.

B. B. Mcconnell, J. M. Klapproth, M. Sasaki, M. O. Nandan, and Y. Vw, Krüppel-like factor 5 mediates transmissible murine colonic hyperplasia caused by Citrobacter rodentium infection, Gastroenterology, vol.134, p.18395082, 2008.

I. Ahmed, P. Chandrakesan, O. Tawfik, L. Xia, and S. Anant, Critical roles of Notch and Wnt/betacatenin pathways in the regulation of hyperplasia and/or colitis in response to bacterial infection, Infect Immun, vol.80, p.22710872, 2012.

J. R. Thiagarajah, J. Chang, J. A. Goettel, A. S. Verkman, and W. I. Lencer, Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia, Proc Natl Acad Sci U S A, vol.114, p.28049834, 2017.

J. R. O'hara, A. C. Skinn, W. K. Macnaughton, P. M. Sherman, and K. A. Sharkey, Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon, Cell Microbiol, vol.8, p.16548890, 2006.

S. C. Regmi, S. Y. Park, S. K. Ku, and J. A. Kim, Serotonin regulates innate immune responses of colon epithelial cells through Nox2-derived reactive oxygen species, Free Radic Biol Med, vol.69, p.24524998, 2014.

L. Jin, S. Batra, D. N. Douda, N. Palaniyar, and S. Jeyaseelan, CXCL1 contributes to host defense in polymicrobial sepsis via modulating T cell and neutrophil functions, Journal of immunology, vol.193, pp.3549-3558, 2014.

P. E. Van-den-steen, A. Wuyts, S. J. Husson, P. Proost, and J. Van-damme, Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities, Eur J Biochem, vol.270, p.12950257, 2003.

A. Mizoguchi, Healing of intestinal inflammation by IL-22, Inflamm Bowel Dis, vol.18, pp.1777-1784, 2012.

J. Diegelmann, T. Olszak, B. Goke, R. S. Blumberg, and S. Brand, A novel role for interleukin-27 (IL-27) as mediator of intestinal epithelial barrier protection mediated via differential signal transducer and activator of transcription (STAT) protein signaling and induction of antibacterial and anti-inflammatory proteins, J Biol Chem, vol.287, p.22069308, 2012.

M. W. Taylor and G. S. Feng, Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism, FASEB J, vol.5, p.1907934, 1991.

D. M. Rodrigues, A. J. Sousa, S. P. Hawley, L. Vong, and M. G. Gareau, Matrix metalloproteinase 9 contributes to gut microbe homeostasis in a model of infectious colitis, BMC Microbiol, vol.12, p.22694805, 2012.

C. Lupp, M. L. Robertson, M. E. Wickham, I. Sekirov, and O. L. Champion, Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae, Cell Host Microbe, vol.2, p.18005726, 2007.

C. Kilkenny, W. J. Browne, I. Cuthi, M. Emerson, and D. G. Altman, Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research, Vet Clin Pathol, vol.41, p.22390425, 2012.

V. F. Crepin, J. W. Collins, M. Habibzay, and G. Frankel, Citrobacter rodentium mouse model of bacterial infection, Nat Protoc, vol.11, p.27606775, 2016.