S. #p6611, S. Louis, and . Mo, The DNA sequences of the mutant clones were checked and validated. RAD51-WT and RAD51 mutants were then over-expressed in Escherichia coli BL21-DE3 strain at 37 ? C. The bacteria are then lysed in buffer (Tris HCl 50 mM, NaCl 500 mM, glycerol 10%, ?-mercaptoethanol 5 mM, imidazole 5 mM), All RAD51 Y/F, RAD51 F86E and RAD51 A190/192L were generated by site-directed mutagenesis using overlapping oligo-nucleotides

E. Mladenov, B. Anachkova, and I. Tsaneva, Sub-nuclear localization of Rad51 in response to DNA damage, Genes Cells, vol.11, pp.513-524, 2006.

J. Y. Park, H. W. Yoo, B. R. Kim, R. Park, S. Y. Choi et al., Identification of a novel human Rad51 variant that promotes DNA strand exchange, Nucleic Acids Res, vol.36, pp.3226-3234, 2008.

A. Barzel and M. Kupiec, Finding a match: How do homologous sequences get together for recombination?, Nat. Rev. Genet, vol.9, pp.27-37, 2008.

B. O. Krogh and L. S. Symington, Recombination proteins in yeast, Annu. Rev. Genet, vol.38, pp.233-271, 2004.

H. Sanchez, M. W. Paul, M. Grosbart, S. E. Van-rossum-fikkert, J. H. Lebbink et al., Architectural plasticity of human BRCA2-RAD51 complexes in DNA break repair, Nucleic Acids Res, vol.45, pp.4507-4518, 2017.

K. Yata, J. Lloyd, S. Maslen, J. Y. Bleuyard, M. Skehel et al., Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair, Mol. Cell, vol.45, pp.371-383, 2012.

C. S. Sorensen, L. T. Hansen, J. Dziegielewski, R. G. Syljuasen, C. Lundin et al., The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair, Nat. Cell Biol, vol.7, pp.195-201, 2005.

M. Popova, H. Shimizu, K. Yamamoto, M. Lebechec, M. Takahashi et al., Detection of c-Abl kinase-promoted phosphorylation of Rad51 by specific antibodies reveals that Y54 phosphorylation is dependent on that of Y315, FEBS Lett, vol.583, pp.1867-1872, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414630

A. Slupianek, Y. Dasgupta, S. Y. Ren, E. Gurdek, M. Donlin et al., Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia, Blood, vol.118, pp.1062-1068, 2011.

S. Subramanyam, M. Ismail, I. Bhattacharya, and M. Spies, Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics, Proc. Natl. Acad. Sci, vol.113, pp.6045-6054, 2016.

B. Alligand, M. Le-breton, D. Marquis, F. Vallette, and F. Fleury, Functional effects of diphosphomimetic mutations at cAbl-mediated phosphorylation sites on Rad51 recombinase activity, Biochimie, vol.139, pp.115-124, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01814671

Y. Wang, J. L. Yuan, Y. T. Zhang, J. J. Ma, P. Xu et al., Inhibition of both EGFR and IGF1R sensitized prostate cancer cells to radiation by synergistic suppression of DNA homologous recombination repair, PLoS ONE, vol.8, 2013.

M. Medova, D. M. Aebersold, and Y. Zimmer, MET inhibition in tumor cells by PHA665752 impairs homologous recombination repair of DNA double strand breaks, Int. J. Cancer, vol.130, pp.728-734, 2012.

M. Medova, D. M. Aebersold, and Y. Zimmer, The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response-Biological and Clinical Aspects, Cancers, vol.6, pp.1-27, 2013.

S. Garcia, J. P. Dales, E. Charafe-jauffret, S. Carpentier-meunier, L. Andrac-meyer et al., Overexpression of c-Met and of the transducers PI3K, FAK and JAK in breast carcinomas correlates with shorter survival and neoangiogenesis, Int. J. Oncol, vol.31, pp.49-58, 2007.

R. A. Ghoussoub, D. A. Dillon, T. .;-d'aquila, E. B. Rimm, E. R. Fearon et al., Expression of c-met is a strong independent prognostic factor in breast carcinoma, Cancer, vol.82, pp.1513-1520, 1998.

P. C. Ma, R. Jagadeeswaran, S. Jagadeesh, M. S. Tretiakova, V. Nallasura et al., Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer, Cancer Res, vol.65, pp.1479-1488, 2005.

J. Peng, S. Qi, P. Wang, W. Li, C. Liu et al., Diagnosis and Prognostic Significance of c-Met in Cervical Cancer: A Meta-Analysis, Dis. Mark, vol.6594016, 2016.

A. Guo, J. Villen, J. Kornhauser, K. A. Lee, M. P. Stokes et al., Signaling networks assembled by oncogenic EGFR and c-Met, Proc. Natl. Acad. Sci, vol.105, pp.692-697, 2008.

S. Kermorgant, D. Zicha, and P. J. Parker, PKC controls HGF-dependent c-Met traffic, signalling and cell migration, EMBO J, vol.23, pp.3721-3734, 2004.

J. W. Welsh, D. Mahadevan, R. Ellsworth, L. Cooke, D. Bearss et al., The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells, Radiat. Oncol, vol.4, 2009.

E. Matteucci, P. Bendinelli, and M. A. Desiderio, Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells, Carcinogenesis, vol.30, pp.937-945, 2009.

R. Barrow-mcgee and S. Kermorgant, Met endosomal signalling: In the right place, at the right time, Int. J. Biochem. Cell Biol, vol.49, pp.69-74, 2014.

I. Brouwer, T. Moschetti, A. Candelli, E. B. Garcin, M. Modesti et al., Two distinct conformational states define the interaction of human RAD51-ATP with single-stranded DNA, EMBO J, vol.37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789423

L. Pellegrini, D. S. Yu, T. Lo, S. Anand, M. Lee et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex, Nature, vol.420, pp.287-293, 2002.

D. S. Yu, E. Sonoda, S. Takeda, C. L. Huang, L. Pellegrini et al., Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2, Mol. Cell, vol.12, pp.1029-1041, 2003.

C. Esnault, A. Renodon-corniere, M. Takahashi, N. Casse, N. Delorme et al., Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: Effects of ADP and BRC4-28 peptide inhibitor, ChemPhysChem, vol.15, pp.3753-3760, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01901212

S. F. Martinez, A. Renodon-corniere, J. Nomme, D. Eveillard, F. Fleury et al., Targeting human Rad51 by specific DNA aptamers induces inhibition of homologous recombination, Biochimie, vol.92, pp.1832-1838, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00626711

J. Nomme, A. Renodon-corniere, Y. Asanomi, K. Sakaguchi, A. Z. Stasiak et al., Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: Modeling and experimental validation of a chimera peptide, J. Med. Chem, vol.53, pp.5782-5791, 2010.

J. Nomme, Y. Takizawa, S. F. Martinez, A. Renodon-corniere, F. Fleury et al., Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC-motif of the BRCA2 protein, Genes Cells, vol.13, pp.471-481, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00414268

D. Velic, A. M. Couturier, M. T. Ferreira, A. Rodrigue, G. G. Poirier et al., DNA Damage Signalling and Repair Inhibitors: The Long-Sought-After Achilles' Heel of Cancer, Biomolecules, vol.5, pp.3204-3259, 2015.

C. Boccaccio, M. Ando, L. Tamagnone, A. Bardelli, P. Michieli et al., Induction of epithelial tubules by growth factor HGF depends on the STAT pathway, Nature, vol.391, pp.285-288, 1998.

C. Ponzetto, A. Bardelli, Z. Zhen, F. Maina, P. Dalla-zonca et al., A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family, Cell, vol.77, pp.261-271, 1994.

K. M. Weidner, S. Di-cesare, M. Sachs, V. Brinkmann, J. Behrens et al., Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis, Nature, vol.384, pp.173-176, 1996.

A. Candelli, J. T. Holthausen, M. Depken, I. Brouwer, M. A. Franker et al., Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution, Proc. Natl. Acad. Sci, vol.111, pp.15090-15095, 2014.

O. R. Davies and L. Pellegrini, Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats, Nat. Struct. Mol. Biol, vol.14, pp.475-483, 2007.

L. Du and Y. Luo, Structure of a hexameric form of RadA recombinase from Methanococcus voltae, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.68, issue.5, pp.511-516, 2012.

D. S. Shin, L. Pellegrini, D. S. Daniels, B. Yelent, L. Craig et al., Full-length archaeal Rad51 structure and mutants: Mechanisms for RAD51 assembly and control by BRCA2, EMBO J, vol.22, pp.4566-4576, 2003.

G. Schay, B. Borka, L. Kernya, E. Bulyaki, J. Kardos et al., Without Binding ATP, Human Rad51 Does Not Form Helical Filaments on ssDNA, J. Phys. Chem. B, vol.120, pp.2165-2178, 2016.

P. Baumann, F. E. Benson, N. Hajibagheri, and S. C. West, Purification of human Rad51 protein by selective spermidine precipitation, Mutat. Res, vol.384, pp.65-72, 1997.

P. Chi, S. Van-komen, M. G. Sehorn, S. Sigurdsson, and P. Sung, Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function, DNA Repair, vol.5, pp.381-391, 2006.

Z. M. Yuan, Y. Huang, T. Ishiko, S. Nakada, T. Utsugisawa et al., Regulation of Rad51 function by c-Abl in response to DNA damage, J. Biol. Chem, vol.273, pp.3799-3802, 1998.

S. Conilleau, Y. Takizawa, H. Tachiwana, F. Fleury, H. Kurumizaka et al., Location of tyrosine 315, a target for phosphorylation by cAbl tyrosine kinase, at the edge of the subunit-subunit interface of the human Rad51 filament, J. Mol. Biol, vol.339, pp.797-804, 2004.

T. Selmane, J. M. Camadro, S. Conilleau, F. Fleury, V. Tran et al., Identification of the subunit-subunit interface of Xenopus Rad51.1 protein: Similarity to RecA, J. Mol. Biol, vol.335, pp.895-904, 2004.

K. Yoshioka, Y. Yumoto-yoshioka, F. Fleury, and M. Takahashi, pH-and salt-dependent self-assembly of human Rad51 protein analyzed as fluorescence resonance energy transfer between labeled proteins, J. Biochem, vol.133, pp.593-597, 2003.

E. Rajendra and A. R. Venkitaraman, Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase, Nucleic Acids Res, vol.38, pp.82-96, 2010.

A. Normand and E. Riviere, Renodon-Corniere, A. Identification and characterization of human Rad51 inhibitors by screening of an existing drug library, Biochem. Pharmacol, vol.91, pp.293-300, 2014.