R. J. Whitley and B. Roizman, Herpes simplex virus infections, Lancet, vol.357, p.11377626, 2001.

S. Efstathiou and C. M. Preston, Towards an understanding of the molecular basis of herpes simplex virus latency, Virus Res, vol.111, p.15951043, 2005.

A. J. St-leger, B. Peters, J. Sidney, A. Sette, and R. L. Hendricks, Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice, J Immunol, vol.186, p.21357536, 2011.

M. Van-velzen, L. Jing, A. Osterhaus, A. Sette, D. M. Koelle et al., Local CD4 and CD8 Tcell reactivity to HSV-1 antigens documents broad viral protein expression and immune competence in latently infected human trigeminal ganglia, PLoS Pathog, vol.9, 2013.

M. W. Douglas, R. J. Diefenbach, F. L. Homa, M. Miranda-saksena, F. J. Rixon et al., Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport, The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, vol.279, p.15117959, 2004.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J Cell Biol, vol.136, p.9060466, 1997.

K. Döhner, K. Radtke, S. Schmidt, and B. Sodeik, Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26, J Virol, vol.80, p.16873277, 2006.

O. O. Koyuncu, I. B. Hogue, and L. W. Enquist, Virus infections in the nervous system, Cell Host Microbe. Elsevier, vol.13, pp.379-393, 2013.

T. Kramer and L. W. Enquist, Directional spread of alphaherpesviruses in the nervous system, Viruses, vol.5, p.23435239, 2013.

M. P. Taylor and L. W. Enquist, Axonal spread of neuroinvasive viral infections, Trends Microbiol, vol.23, p.288, 2015.

A. E. Sears, V. Hukkanen, M. A. Labow, A. J. Levine, and B. Roizman, Expression of the herpes simplex virus 1 alpha transinducing factor (VP16) does not induce reactivation of latent virus or prevent the establishment of latency in mice, J Virol, vol.65, p.1851865, 1991.

G. Luxton, S. Haverlock, K. E. Coller, S. E. Antinone, A. Pincetic et al., Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc Natl Acad Sci USA, vol.102, p.15795370, 2005.

A. Aggarwal, M. Miranda-saksena, R. A. Boadle, B. J. Kelly, R. J. Diefenbach et al., Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons, J Virol, vol.86, p.22457528, 2012.

N. M. Sawtell and R. L. Thompson, De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia, PLoS Pathog. Public Library of Science, vol.12, p.27607440, 2016.

T. Alandijany, A. Roberts, K. L. Conn, C. Loney, S. Mcfarlane et al., Distinct temporal roles for the promyelocytic leukaemia (PML) protein in the sequential regulation of intracellular host immunity to HSV-1 infection, PLoS Pathog. Public Library of Science, vol.14, p.29309427, 2018.

F. Catez, C. Picard, K. Held, S. Gross, A. Rousseau et al., HSV-1 Genome Subnuclear Positioning and Associations with Host-Cell PML-NBs and Centromeres Regulate LAT Locus Transcription during Latency in Neurons, PLoS Pathog, vol.8, p.22912575, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00749614

M. Maroui, A. Callé, C. Cohen, N. Streichenberger, P. Texier et al., Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment, PLoS Pathog. Public Library of Science, vol.12, p.27618691, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01911474

A. Mehta, J. Maggioncalda, O. Bagasra, S. Thikkavarapu, P. Saikumari et al., In situ DNA PCR and RNA hybridization detection of herpes simplex virus sequences in trigeminal ganglia of latently infected mice, Virology, vol.206, p.7831818, 1995.

N. M. Sawtell, Comprehensive quantification of herpes simplex virus latency at the single-cell level, J Virol, vol.71, p.9188614, 1997.

N. M. Sawtell, D. K. Poon, C. S. Tansky, and R. L. Thompson, The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation, J Virol, vol.72, p.9620987, 1998.

X. Chen, M. Mata, M. Kelley, J. C. Glorioso, and D. J. Fink, The relationship of herpes simplex virus latency associated transcript expression to genome copy number: a quantitative study using laser capture microdissection, J Neurovirol, vol.8, p.12053275, 2002.

K. Wang, T. Y. Lau, M. Morales, E. K. Mont, and S. E. Straus, Laser-capture microdissection: refining estimates of the quantity and distribution of latent herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia at the single-cell level, J Virol, vol.79, p.16254342, 2005.

J. T. Proenca, H. M. Coleman, V. Connor, D. J. Winton, and S. Efstathiou, A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. The Journal of general virology, vol.89, p.19008381, 2008.

J. T. Proenca, H. M. Coleman, M. P. Nicoll, V. Connor, C. M. Preston et al., An investigation of HSV promoter activity compatible with latency establishment reveals VP16 independent activation of HSV immediate early promoters in sensory neurones, The Journal of general virology, vol.92, p.21752961, 2011.

K. Held, A. Junker, K. Dornmair, E. Meinl, I. Sinicina et al., Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates, J Virol, vol.85, p.21795359, 2011.

D. C. Bloom, N. V. Giordani, and D. L. Kwiatkowski, Epigenetic regulation of latent HSV-1 gene expression. Biochimica et biophysica acta, vol.1799, pp.246-256, 2010.

T. M. Kristie, Y. Liang, and J. L. Vogel, Control of alpha-herpesvirus IE gene expression by HCF-1 coupled chromatin modification activities. Biochimica et biophysica acta, vol.1799, p.19682612, 2009.

D. M. Knipe, P. M. Lieberman, J. U. Jung, A. A. Mcbride, K. V. Morris et al., Snapshots: chromatin control of viral infection, Virology, vol.435, p.23217624, 2013.

S. L. Deshmane and N. W. Fraser, During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure, J Virol, vol.63, p.2536115, 1989.

N. J. Kubat, R. K. Tran, P. Mcanany, and D. C. Bloom, Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression, J Virol, vol.78, p.14722269, 2004.

Q. Wang, C. Zhou, K. E. Johnson, R. C. Colgrove, D. M. Coen et al., Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection, Proc Natl Acad Sci USA, vol.102, p.16247011, 2005.

D. M. Knipe and A. Cliffe, Chromatin control of herpes simplex virus lytic and latent infection, Nature reviews, vol.6, p.18264117, 2008.

A. R. Cliffe, D. A. Garber, and D. M. Knipe, Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters, J Virol, vol.83, p.19515781, 2009.

D. L. Kwiatkowski, H. W. Thompson, and D. C. Bloom, The polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency, J Virol, vol.83, p.19515780, 2009.

H. Tagami, D. Ray-gallet, G. Almouzni, and Y. Nakatani, Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis, Cell, vol.116, p.14718166, 2004.

E. Szenker, D. Ray-gallet, and G. Almouzni, The double face of the histone variant H3.3, Cell Res, vol.21, p.21263457, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00742959

L. H. Wong, J. D. Mcghie, M. Sim, M. A. Anderson, S. Ahn et al., ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells, Genome Res, vol.20, p.20110566, 2010.

A. D. Goldberg, L. A. Banaszynski, K. Noh, P. W. Lewis, S. J. Elsaesser et al., Distinct factors control histone variant H3.3 localization at specific genomic regions, Cell, vol.140, p.20211137, 2010.

P. Drané, K. Ouararhni, A. Depaux, M. Shuaib, and A. Hamiche, The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes & development, vol.24, pp.1253-1265, 2010.

G. Banumathy, N. Somaiah, R. Zhang, Y. Tang, J. Hoffmann et al., Human UBN1 is an ortholog of yeast Hpc2p and has an essential role in the HIRA/ASF1a chromatin-remodeling pathway in senescent cells, Molecular and cellular biology, vol.29, p.19029251, 2009.

T. S. Rai, A. Puri, T. Mcbryan, J. Hoffman, Y. Tang et al., Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Molecular and cellular biology, vol.31, p.21807893, 2011.

E. Delbarre, K. Ivanauskiene, T. Küntziger, and P. Collas, DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin, Genome Res, vol.23, p.23222847, 2013.

A. Corpet, T. Olbrich, M. Gwerder, D. Fink, and M. Stucki, Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization, Cell cycle (Georgetown), Tex, vol.13, pp.249-267, 2013.

E. Delbarre, K. Ivanauskiene, J. Spirkoski, A. Shah, K. Vekterud et al., PML protein organizes heterochromatin domains where it regulates histone H3.3 deposition by ATRX/DAXX, Genome Res. Cold Spring Harbor Lab, 2017.

R. D. Everett, J. Murray, A. Orr, and C. M. Preston, Herpes simplex virus type 1 genomes are associated with ND10 nuclear substructures in quiescently infected human fibroblasts, American Society for Microbiology, vol.81, p.17670833, 2007.

D. R. Jamieson, L. H. Robinson, J. I. Daksis, M. J. Nicholl, and C. M. Preston, Quiescent viral genomes in human fibroblasts after infection with herpes simplex virus type 1 Vmw65 mutants. The Journal of general virology, vol.76, pp.1417-1431, 1995.

C. M. Preston and M. J. Nicholl, Repression of gene expression upon infection of cells with herpes simplex virus type 1 mutants impaired for immediate-early protein synthesis, J Virol, vol.71, p.9311867, 1997.

L. A. Samaniego, L. Neiderhiser, and N. A. Deluca, Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins, J Virol, vol.72, p.9525658, 1998.

M. W. Ferenczy and N. A. Deluca, Epigenetic modulation of gene expression from quiescent herpes simplex virus genomes, J Virol, vol.83, p.19535445, 2009.

S. A. Jackson and N. A. Deluca, Relationship of herpes simplex virus genome configuration to productive and persistent infections, Proc Natl Acad Sci USA, vol.100, p.12796511, 2003.

D. Ray-gallet, J. Quivy, C. Scamps, E. Martini, M. Lipinski et al., HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis, Molecular cell, vol.9, p.12049744, 2002.

D. Ray-gallet, A. Woolfe, I. Vassias, C. Pellentz, N. Lacoste et al., Dynamics of histone h3 deposition in vivo reveal a nucleosome gap-filling mechanism for h3.3 to maintain chromatin integrity. Molecular cell, vol.44, p.22195966, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743096

P. Lomonte, The interaction between herpes simplex virus 1 genome and promyelocytic leukemia nuclear bodies (PML-NBs) as a hallmark of the entry in latency, Microb Cell, vol.3, p.28357326, 2016.

P. Lomonte and . Herpesvirus-latency, On the Importance of Positioning Oneself, Adv Anat Embryol Cell Biol, vol.223, p.28528441, 2017.

J. A. Dembowski and N. A. Deluca, Temporal Viral Genome-Protein Interactions Define Distinct Stages of Productive Herpesviral Infection, MBio, vol.9, p.90, 2018.

T. S. Rai, M. Glass, J. J. Cole, M. I. Rather, M. Marsden et al., Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity, 2017.

H. Zhang, H. Gan, Z. Wang, J. Lee, H. Zhou et al., RPA Interacts with HIRA and Regulates H3.3 Deposition at Gene Regulatory Elements in Mammalian Cells, Molecular cell, vol.65, p.28107649, 2017.

E. R. Albright and R. F. Kalejta, Canonical and variant forms of histone H3 are deposited onto the human cytomegalovirus genome during lytic and latent infections, J Virol, 2016.

M. W. Ferenczy and N. A. Deluca, Reversal of Heterochromatic Silencing of Quiescent Herpes Simplex Virus Type 1 by ICP0, J Virol, vol.85, p.21191021, 2011.

M. W. Ferenczy, D. J. Ranayhossaini, and N. A. Deluca, Activities of Icp0 Involved in the Reversal of Silencing of Quiescent Hsv-1, J Virol, 2011.

K. R. Blahnik, L. Dou, L. Echipare, S. Iyengar, H. O'geen et al., Characterization of the contradictory chromatin signatures at the 3' exons of zinc finger genes, PloS one. Public Library of Science, vol.6, p.21347206, 2011.

A. Kirmizis, S. M. Bartley, A. Kuzmichev, R. Margueron, D. Reinberg et al., Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27, Genes & development. Cold Spring Harbor Lab, vol.18, pp.1592-1605, 2004.

G. Banumathy, N. Somaiah, R. Zhang, Y. Tang, J. Hoffmann et al., Human UBN1 Is an Ortholog of Yeast Hpc2p and Has an Essential Role in the HIRA/ASF1a Chromatin-Remodeling Pathway in Senescent Cells, Molecular and cellular biology, vol.29, p.19029251, 2009.

M. D. Ricketts, B. Frederick, H. Hoff, Y. Tang, D. C. Schultz et al., Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex, Nat Commun, vol.6, pp.7711-7722, 2015.

D. Cuchet-lourenço, V. E. Glass, M. Orr, A. Everett, and R. D. , Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation, J Virol, vol.86, p.22875967, 2012.

R. D. Everett and G. G. Maul, HSV-1 IE protein Vmw110 causes redistribution of PML, The EMBO journal, vol.13, p.7957072, 1994.

W. P. Halford and P. A. Schaffer, ICP0 is required for efficient reactivation of herpes simplex virus type 1 from neuronal latency, J Virol, vol.75, p.11238850, 2001.

B. J. Placek, J. Huang, J. R. Kent, J. Dorsey, L. Rice et al., The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1, J Virol, vol.83, p.19004946, 2008.

J. Oh, N. Ruskoski, and N. W. Fraser, Chromatin assembly on herpes simplex virus 1 DNA early during a lytic infection is Asf1a dependent, J Virol, vol.86, p.22951827, 2012.

Y. Tang, A. Puri, M. D. Ricketts, T. S. Rai, J. Hoffmann et al., Identification of an ubinuclein 1 region required for stability and function of the human HIRA/UBN1/CABIN1/ASF1a histone H3.3 chaperone complex, Biochemistry. American Chemical Society, vol.51, pp.2366-2377, 2012.

S. Adam, S. E. Polo, and G. Almouzni, Transcription Recovery after DNA Damage Requires Chromatin Priming by the H3.3 Histone Chaperone HIRA, Cell, vol.155, p.24074863, 2013.

S. Adam, J. Dabin, O. Chevallier, O. Leroy, C. Baldeyron et al., Real-Time Tracking of Parental Histones Reveals Their Contribution to Chromatin Integrity Following DNA Damage, Molecular cell, vol.64, p.27642047, 2016.

N. M. Wilkie, The synthesis and substructure of herpesvirus DNA: the distribution of alkali-labile single strand interruptions in HSV-1 DNA. The Journal of general virology, Microbiology Society, vol.21, p.4357936, 1973.

M. H. Orzalli, S. E. Conwell, C. Berrios, J. A. Decaprio, and D. M. Knipe, Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA, Proc Natl Acad Sci USA, vol.110, p.23267076, 2013.

L. Unterholzner, S. E. Keating, M. Baran, K. A. Horan, S. B. Jensen et al., IFI16 is an innate immune sensor for intracellular DNA, Nat Immunol, vol.11, p.20890285, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00582635

N. Kerur, M. V. Veettil, N. Sharma-walia, V. Bottero, S. Sadagopan et al., IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection, Cell Host Microbe, vol.9, p.21575908, 2011.

G. R. Gariano, V. Dell'oste, M. Bronzini, D. Gatti, A. Luganini et al., The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication, PLoS Pathog, vol.8, p.22291595, 2012.

M. H. Orzalli, N. A. Deluca, and D. M. Knipe, Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein, Proc Natl Acad Sci USA. National Acad Sciences, vol.109, p.23027953, 2012.

K. E. Johnson, L. Chikoti, and B. Chandran, Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes, J Virol, vol.87, p.23427152, 2013.

M. A. Ansari, V. V. Singh, S. Dutta, M. V. Veettil, D. Dutta et al., Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells, J Virol, vol.87, p.23720728, 2013.

D. Dutta, S. Dutta, M. V. Veettil, A. Roy, M. A. Ansari et al., BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon-? Responses. Feng P, editor, PLoS Pathog, vol.11, p.26121674, 2015.

B. A. Diner, T. Li, T. M. Greco, M. S. Crow, J. A. Fuesler et al., The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA, Mol Syst Biol. European Molecular Biology Organization, vol.11, p.25665578, 2015.

K. Tsai, L. Chan, R. Gibeault, K. Conn, J. Dheekollu et al., Viral Reprogramming of the DaxxHistone H3.3 Chaperone During EBV Early Infection, J Virol. American Society for Microbiology, vol.88, p.25275136, 2014.

S. Schreiner, C. Bürck, M. Glass, P. Groitl, P. Wimmer et al., Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes, Nucleic acids research, 2013.

M. Labetoulle, S. Maillet, S. Efstathiou, S. Dezelee, E. Frau et al., HSV1 latency sites after inoculation in the lip: assessment of their localization and connections to the eye, Invest Ophthalmol Vis Sci, vol.44, p.12506078, 2003.

C. M. Preston, Abnormal properties of an immediate early polypeptide in cells infected with the herpes simplex virus type 1 mutant tsK, J Virol, vol.32, p.228063, 1979.

C. I. Ace, T. A. Mckee, J. M. Ryan, J. M. Cameron, and C. M. Preston, Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression, J Virol, vol.63, p.2539517, 1989.

C. M. Preston, A. Rinaldi, and M. J. Nicholl, Herpes simplex virus type 1 immediate early gene expression is stimulated by inhibition of protein synthesis, The Journal of general virology, vol.79, pp.117-124, 1998.

C. M. Preston and M. J. Nicholl, Human Cytomegalovirus Tegument Protein pp71 Directs Long-Term Gene Expression from Quiescent Herpes Simplex Virus Genomes, J Virol, vol.79, p.15596845, 2005.

M. Mcfarlane, J. I. Daksis, and C. M. Preston, Hexamethylene bisacetamide stimulates herpes simplex virus immediate early gene expression in the absence of trans-induction by Vmw65, The Journal of general virology, vol.73, issue.2, pp.285-292, 1992.

Z. G. Wang, D. Ruggero, S. Ronchetti, S. Zhong, M. Gaboli et al., PML is essential for multiple apoptotic pathways, Nat Genet, vol.20, p.9806545, 1998.

F. Catez, A. Rousseau, M. Labetoulle, and P. Lomonte, Detection of the genome and transcripts of a persistent DNA virus in neuronal tissues by fluorescent in situ hybridization combined with immunostaining, J Vis Exp, p.24514006, 2014.

N. M. Sawtell and R. L. Thompson, Comparison of herpes simplex virus reactivation in ganglia in vivo and in explants demonstrates quantitative and qualitative differences, J Virol, vol.78, p.15220452, 2004.

C. Cunningham and A. J. Davison, A cosmid-based system for constructing mutants of herpes simplex virus type 1, Virology, vol.197, p.8212547, 1993.

W. Pear, Transient transfection methods for preparation of high-titer retroviral supernatants, Curr Protoc Mol Biol, vol.9, 2001.

R. K. Naviaux, E. Costanzi, M. Haas, and I. M. Verma, The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses, J Virol, vol.70, p.8764092, 1996.

J. Sambrook and D. W. Russell, Calcium-phosphate-mediated Transfection of Eukaryotic Cells with Plasmid DNAs, Sambrook JRussell D, 2006.

R. D. Everett, M. Parsy, and A. Orr, Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes, J Virol, vol.83, p.19264778, 2009.

S. R. Cantrell and W. A. Bresnahan, Human cytomegalovirus (HCMV) UL82 gene product (pp71) relieves hDaxx-mediated repression of HCMV replication, J Virol, vol.80, pp.6188-6191, 2006.

R. Zhang, S. Liu, W. Chen, M. Bonner, J. Pehrson et al., HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Molecular and cellular biology, vol.27, p.17101789, 2007.