B. Ekser, M. Ezzelarab, H. Hara, D. J. Van-der-windt, M. Wijkstrom et al., Clinical xenotransplantation: the next medical revolution?, Lancet, vol.379, pp.672-683, 2012.

A. Sgroi, L. H. Buhler, P. Morel, M. Sykes, and L. Noel, International human xenotransplantation inventory, Transplantation, vol.90, pp.597-603, 2010.

R. B. Elliott, Towards xenotransplantation of pig islets in the clinic, Curr Opin Organ Transplant, vol.16, pp.195-200, 2011.

M. F. Levy, J. Crippin, S. Sutton, G. Netto, J. Mccormack et al., Liver allotransplantation after extracorporeal hepatic support with transgenic (hCD55/hCD59) porcine livers: clinical results and lack of pig-to-human transmission of the porcine endogenous retrovirus, Transplantation, vol.69, pp.272-280, 2000.

C. Gu, X. Wei, Y. Wang, Y. Chen, J. Liu et al., No infection with porcine endogenous retrovirus in recipients of acellular porcine aortic valves: a two-year study, Xenotransplantation, vol.15, pp.121-128, 2008.

T. W. Stapleton, J. Ingram, J. Katta, R. Knight, S. Korossis et al., Development and characterization of an acellular porcine medial meniscus for use in tissue engineering, Tissue Eng Part A, vol.14, pp.505-518, 2008.

H. Nasajpour, K. A. Leblanc, and M. H. Steele, Complex hernia repair using component separation technique paired with intraperitoneal acellular porcine dermis and synthetic mesh overlay, Ann Plast Surg, vol.66, pp.280-284, 2011.

B. Dvorankova, L. Broz, I. Pafcuga, Z. Kapounkova, and R. Konigova, The role of skin bank in the treatment of severely burnt patients, Acta Chir Plast, vol.46, pp.51-55, 2004.

L. Ge, L. Sun, J. Chen, X. Mao, Y. Kong et al., The viability change of pigskin in vitro, Burns, vol.36, pp.533-538, 2010.

Y. Takeuchi and J. Fishman, Long life with or without PERV, Xenotransplantation, vol.17, pp.429-430, 2011.

U. Galili, Induced anti-non gal antibodies in human xenograft recipients, Transplantation, vol.93, pp.11-16, 2012.

, Breimer ME. Gal/non-Gal antigens in pig tissues and human non-Gal antibodies in the GalT-KO era, vol.18, pp.215-228, 2011.

K. Paradis, G. Langford, Z. Long, W. Heneine, P. Sandstrom et al., Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group, Science, vol.285, pp.1236-1241, 1999.

D. Nicuolo, G. , D. 'alessandro, A. , A. B. Scuderi et al., Long-term absence of porcine endogenous retrovirus infection in chronically immunosuppressed patients after treatment with the porcine cell-based, Academic Medical Center bioartificial liver. Xenotransplantation, vol.17, pp.431-439

W. Heneine, A. Tibell, W. M. Switzer, P. Sandstrom, G. V. Rosales et al., No evidence of infection with porcine endogenous retrovirus in recipients of porcine islet-cell xenografts, Lancet, vol.352, pp.695-699, 1998.

M. Irgang, M. Sauer, A. Karlas, K. Zeilinger, J. C. Gerlach et al., Porcine endogenous retroviruses: no infection in patients treated with a bioreactor based on porcine liver cells, J Clin Virol, vol.28, pp.141-154, 2003.

C. Patience, G. S. Patton, Y. Takeuchi, R. A. Weiss, M. O. Mcclure et al., No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys, Lancet, vol.352, pp.699-701, 1998.

R. Valdes-gonzalez, L. M. Dorantes, E. Bracho-blanchet, A. Rodriguez-ventura, and D. J. White, No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation, J Med Virol, vol.82, pp.331-334

R. Valdes-gonzalez, A. L. Rodriguez-ventura, D. J. White, E. Bracho-blanchet, A. Castillo et al., Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets, Clin Exp Immunol, vol.162, pp.537-542

J. Denner, Is porcine endogenous retrovirus (PERV) transmission still relevant?, Transplant Proc, vol.40, pp.587-589, 2008.

J. A. Fishman, L. Scobie, and Y. Takeuchi, Xenotransplantation-associated infectious risk: a WHO consultation, Xenotransplantation, vol.19, pp.72-81, 2012.

A. G. Rose, D. K. Cooper, P. A. Human, H. Reichenspurner, and B. Reichart, Histopathology of hyperacute rejection of the heart: experimental and clinical observations in allografts and xenografts, J Heart Lung Transplant, vol.10, pp.223-234, 1991.

R. Oriol, Y. Ye, E. Koren, and D. K. Cooper, Carbohydrate antigens of pig tissues reacting with human natural antibodies as potential targets for hyperacute vascular rejection in pig-to-man organ xenotransplantation, Transplantation, vol.56, pp.1433-1442, 1993.

E. Cozzi and D. J. White, The generation of transgenic pigs as potential organ donors for humans, Nat Med, vol.1, pp.964-966, 1995.

D. K. Cooper, E. Koren, and R. Oriol, Oligosaccharides and discordant xenotransplantation, Immunol Rev, vol.141, pp.31-58, 1994.

M. Sandrin and F. Mckenzie, Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies, Immunol Rev, vol.141, pp.169-190, 1994.

B. A. Macher and U. Galili, The Galalpha1,3Galbeta1,4GlcNAc-R(alpha-Gal) epitope: a carbohydrate of unique evolution and clinical relevance, Biochim Biophys Acta, vol.1780, pp.75-88, 2008.

U. Galili, The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy, Immunol Cell Biol, vol.83, pp.674-686, 2005.

E. Lindeborg, M. Kumagai-braesch, A. Tibell, and E. Moller, Continued production of xenoimmune antibodies 6-8 years after clinical transplantation of fetal pig islet-like cell-clusters, Xenotransplantation, vol.8, pp.273-283, 2001.

K. Kuwaki, Y. L. Tseng, F. J. Dor, A. Shimizu, S. L. Houser et al., Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience, Nat Med, vol.11, pp.29-31, 2005.

K. Yamada, K. Yazawa, A. Shimizu, T. Iwanaga, Y. Hisashi et al., Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue, Nat Med, vol.11, pp.32-34, 2005.

D. K. Cooper, A. Dorling, . Pierson, M. Rees, J. Seebach et al., Alpha1,3-galactosyltransferase gene-knockout pigs for xenotransplantation: where do we go from here?, Transplantation, vol.84, pp.1-7, 2007.

T. Fujimura, Y. Takahagi, T. Shigehisa, H. Nagashima, S. Miyagawa et al., Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells, Mol Reprod Dev, vol.75, pp.1372-1378, 2008.

C. J. Phelps, C. Koike, T. D. Vaught, J. Boone, K. D. Wells et al., Production of alpha 1,3-galactosyltransferase-deficient pigs, Science, vol.299, pp.411-414, 2003.

D. Kolber-simonds, L. Lai, S. R. Watt, M. Denaro, S. Arn et al., Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations, Proc Natl Acad Sci U S A, vol.101, pp.7335-7340, 2004.

D. Bouhours, J. Liaigre, J. Lemoine, F. Mayer-posner, and J. F. Bouhours, Two novel isoneolactoundecaglycosylceramides carrying Galalpha1-->3Lewis(x) on the 6-linked antenna and Nacetylneuraminic acidalpha2-->3 or Galactose alpha1-->3 on the 3-linked antenna, expressed in porcine kidney, Glycoconj J, vol.15, pp.1001-1016, 1998.

A. Zhu and R. Hurst, Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum, Xenotransplantation, vol.9, pp.376-381, 2002.

G. Chen, H. Qian, T. Starzl, H. Sun, B. Garcia et al., Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys, Nat Med, vol.11, pp.1295-1298, 2005.

Y. Miwa, T. Kobayashi, T. Nagasaka, D. Liu, M. Yu et al., Are Nglycolylneuraminic acid (Hanganutziu-Deicher) antigens important in pig-to-human xenotransplantation?, Xenotransplantation, vol.11, pp.247-253, 2004.

M. Ezzelarab, D. Ayares, and D. K. Cooper, Carbohydrates in xenotransplantation, Immunol Cell Biol, vol.83, pp.396-404, 2005.

P. Tangvoranuntakul, P. Gagneux, S. Diaz, M. Bardor, N. Varki et al., Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid, Proc Natl Acad Sci U S A, vol.100, pp.12045-12050, 2003.

A. Varki, Colloquium paper: uniquely human evolution of sialic acid genetics and biology, Proc Natl Acad Sci, vol.107, issue.2, pp.8939-8946, 2010.

V. Padler-karavani and A. Varki, Potential impact of the non-human sialic acid N-glycolylneuraminic acid on transplant rejection risk, Xenotransplantation, vol.18, pp.1-5, 2011.

T. Pham, C. J. Gregg, F. Karp, R. Chow, V. Padler-karavani et al., Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium, Blood, vol.114, pp.5225-5235, 2009.

M. Hedlund, V. Padler-karavani, N. M. Varki, and A. Varki, Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression, Proc Natl Acad Sci U S A, vol.105, pp.18936-18941, 2008.

V. Padler-karavani, N. Hurtado-ziola, M. Pu, H. Yu, S. Huang et al., Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer, Cancer research, vol.71, pp.3352-3363, 2011.

R. Zajicek, E. Matouskova, L. Broz, R. Kubok, P. Waldauf et al., New biological temporary skin cover Xe-Derma((R)) in the treatment of superficial scald burns in children, Burns, vol.37, pp.333-337, 2011.

L. Broz, D. Vogtova, and R. Konigova, Experience with banked skin in the Prague Burn Center, Acta Chir Plast, vol.41, pp.54-58, 1999.

B. Bartosch, D. Stefanidis, R. Myers, R. Weiss, C. Patience et al., Evidence and consequence of porcine endogenous retrovirus recombination, J Virol, vol.78, pp.13880-13890, 2004.

G. Mattiuzzo, Y. Takeuchi, and L. Scobie, Potential zoonotic infection of porcine endogenous retrovirus in xenotransplantation, Methods Mol Biol, vol.885, pp.263-279, 2012.

J. C. Wood, G. Quinn, K. M. Suling, B. A. Oldmixon, B. A. Van-tine et al., Identification of exogenous forms of human-tropic porcine endogenous retrovirus in miniature Swine, J Virol, vol.78, pp.2494-2501, 2004.

A. Wood, B. L. Webb, B. Bartosch, T. Schaller, Y. Takeuchi et al., Porcine endogenous retroviruses PERV A and A/C recombinant are insensitive to a range of divergent mammalian TRIM5alpha proteins including human TRIM5alpha, J Gen Virol, vol.90, pp.702-709, 2009.

R. Buonomano, C. Tinguely, R. Rieben, P. J. Mohacsi, and U. E. Nydegger, Quantitation and characterization of anti-Galalpha1-3Gal antibodies in sera of 200 healthy persons, Xenotransplantation, vol.6, pp.173-180, 1999.

M. Chatelais, J. Devalliere, C. Galli, and B. Charreau, Gene transfer of the adaptor Lnk (SH2B3) prevents porcine endothelial cell activation and apoptosis: implication for xenograft's cytoprotection, Xenotransplantation, vol.18, pp.108-120

V. Padler-karavani, A. H. Tremoulet, H. Yu, X. Chen, J. C. Burns et al., A Simple Method For Assessment Of Human Anti-Neu5Gc Antibodies Applied to Kawasaki Disease, PLoS One, vol.8, p.58443, 2013.

V. Padler-karavani, X. Song, H. Yu, N. Hurtado-ziola, S. Huang et al., Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays, J Biol Chem, vol.287, pp.22593-22608, 2012.

A. J. Lutz, P. Li, J. L. Estrada, R. A. Sidner, R. K. Chihara et al., Double knockout pigs deficient in Nglycolylneuraminic acid and Galactose alpha-1,3-Galactose reduce the humoral barrier to xenotransplantation, Xenotransplantation, vol.20, pp.27-35, 2013.

L. R. Davies, O. M. Pearce, M. B. Tessier, S. Assar, V. Smutova et al., Metabolism of vertebrate amino sugars with N-glycolyl groups: resistance of alpha2-8-linked N-glycolylneuraminic acid to enzymatic cleavage, J Biol Chem, vol.287, pp.28917-28931, 2012.

A. Varki and S. Diaz, The release and purification of sialic acids from glycoconjugates: methods to minimize the loss and migration of O-acetyl groups, Anal Biochem, vol.137, pp.236-247, 1984.

Q. Lu, V. Padler-karavani, H. Yu, X. Chen, S. L. Wu et al., LC-MS analysis of polyclonal human anti-Neu5Gc xeno-autoantibodies immunoglobulin G Subclass and partial sequence using multistep intravenous immunoglobulin affinity purification and multienzymatic digestion, Anal Chem, vol.84, pp.2761-2768, 2012.

D. Dufrane, R. M. Goebbels, and P. Gianello, Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression, Transplantation, vol.90, pp.1054-1062, 2010.

H. H. Chou, H. Takematsu, S. Diaz, J. Iber, E. Nickerson et al., A mutation in human CMP-sialic acid hydroxylase occurred after the HomoPan divergence, Proc Natl Acad Sci, vol.95, pp.11751-11756, 1998.

A. Irie, S. Koyama, Y. Kozutsumi, T. Kawasaki, and A. Suzuki, The molecular basis for the absence of Nglycolylneuraminic acid in humans, J Biol Chem, vol.273, pp.15866-15871, 1998.

M. G. Jeschke, G. G. Gauglitz, G. A. Kulp, C. C. Finnerty, F. N. Williams et al., Long-term persistance of the pathophysiologic response to severe burn injury, PLoS One, vol.6, 2011.

T. Defrance, M. Taillardet, and L. Genestier, T cell-independent B cell memory, Curr Opin Immunol, vol.23, pp.330-336, 2011.

I. J. Amanna and M. K. Slifka, Mechanisms that determine plasma cell lifespan and the duration of humoral immunity, Immunol Rev, vol.236, pp.125-138, 2010.

M. E. El-shikh, E. Sayed, R. M. Sukumar, S. Szakal, A. K. Tew et al., Activation of B cells by antigens on follicular dendritic cells, Trends Immunol, vol.31, pp.205-211, 2010.

, 1/160 (B) of serum from healthy volunteers ( , HC; n=26), burn patients treated conventionally , BP-CTRL; n=14) or who received a pig skin plaster ( BP-PS; n=49) were reacted against Gal 1-3Gal-polyacrylamide conjugate and revealed with anti-human IgG antibodies by ELISA

, *, p<0.05. IgG binding to WT and GalKO PAEC IgG patient serum xenoreactivity to WT and GalKO PAEC. Serum xenoreactivity of healthy controls

, BP-CTRL; n=14) and pig skin treated burn patients ( , BP-PS; n=53) was assessed by flow cytometry: IgG serum reactivity was assessed against WT PAECs at a 1/32 dilution (C) and against GalKO PAECs at a 1/4 dilution (D), representing respectively the anti-Gal and non-Gal IgG Ab (C) and the anti-non-Gal IgG Ab (D)

A. Padler-karavani, Binding pattern of BP-PS versus BP-CTRLs (at 1:250 serum dilution) on sialoglycan microarray, including various matched pairs of Neu5Ac-glycans and Neu5Gc-glycans (Array 1 full glycan list is detailed in ref, J Biol Chem), 2012.

, Mann Whitney test; Neu5Gc-glycans, P=0.0207; Neu5Ac-glycans, P=0.5775). C. ROC curve analysis on binding to Neu5Gc-glycans in BP-PS versus BP-CTRL. The area under the ROC Curve (AUC) revealed a significantly (P<0.05) elevated IgG response to some Neu5Gc-glycans in BP-PS compared to the BP-CTRL. In general, the least difference is observed for antibodies to Neu5Gc-glycans that are modified with O-Acetylation at position C-9 (Neu5Gc9Ac), suggesting those antigens do not contribute to anti-Neu5Gc immune response to PS (P<0.05, glycans 36, 4, 10, 30, 40, 24, 38). However, there is a strong preference to Neu5Gc 2-6LacNAc/Lac over Neu5Gc 2-6GalNAc or Neu5Gc 2-3LacNAc (glycans 18, 20 > 6, 12) with no binding to Neu5Gc 2-3Lac (glycan 22), Digital array data are presented in Supplementary Table S1. B. Statistical analysis of serum binding to the various glycans reveals that only binding to Neu5Gc-glycans is significantly higher in BP-PS compared to the BP-CTRL

. Scobie, , p.19