N. Perico, D. Cattaneo, and M. H. Sayegh, Delayed graft function in kidney transplantation, Lancet, vol.364, p.1814, 2004.

S. G. Yarlagadda, S. G. Coca, and A. X. Garg, Marked variation in the definition and diagnosis of delayed graft function: a systematic review, Nephrol Dial Transplant, vol.23, p.2995, 2008.

M. Giral-classe, M. Hourmant, and D. Cantarovich, Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys, Kidney Int, vol.54, p.972, 1998.

S. N. Tapiawala, K. J. Tinckam, and C. J. Cardella, Delayed graft function and the risk for death with a functioning graft, J Am Soc Nephrol, vol.21, p.153, 2010.

S. G. Yarlagadda, S. G. Coca, R. N. Formica, and . Jr, Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis, Nephrol Dial Transplant, vol.24, p.1039, 2009.

P. Boros and J. S. Bromberg, New cellular and molecular immune pathways in ischemia/reperfusion injury, Am J Transplant, vol.6, p.652, 2006.

A. Siedlecki, W. Irish, and D. C. Brennan, Delayed graft function in the kidney transplant, Am J Transplant, vol.11, p.2279, 2011.

N. Ferrara, H. P. Gerber, and J. Lecouter, The biology of VEGF and its receptors, Nat Med, vol.9, p.669, 2003.

N. Rahimi, T. E. Golde, and R. D. Meyer, Identification of ligand-induced proteolytic cleavage and ectodomain shedding of VEGFR-1/FLT1 in leukemic cancer cells, Cancer Res, vol.69, p.2607, 2009.

R. J. Levine, C. Lam, and C. Qian, Soluble endoglin and other circulating antiangiogenic factors in preeclampsia, N Engl J Med, vol.355, p.992, 2006.

S. E. Maynard and S. A. Karumanchi, Angiogenic factors and preeclampsia, Semin Nephrol, vol.31, p.33, 2011.

D. Marco, G. S. Reuter, S. Hillebrand, and U. , The soluble VEGF receptor sFlt1 contributes to endothelial dysfunction in CKD, J Am Soc Nephrol, vol.20, p.2235, 2009.

L. Roux, S. Pepper, R. J. Dufay, and A. , Elevated soluble Flt1 inhibits endothelial repair in PR3-ANCA-associated vasculitis, J Am Soc Nephrol, vol.23, p.155, 2012.

H. F. Langer, K. J. Chung, and V. V. Orlova, Complement-mediated inhibition of neovascularization reveals a point of convergence between innate immunity and angiogenesis, Blood, vol.116, p.4395, 2010.

G. Girardi, D. Yarilin, and J. M. Thurman, Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction, J Exp Med, vol.203, p.2165, 2006.

Q. Peng, K. Li, and L. A. Smyth, C3a and C5a promote renal ischemiareperfusion injury, J Am Soc Nephrol, vol.23, p.1474, 2012.

M. Sadeghi, V. Daniel, and C. Naujokat, Decreasing plasma soluble IL-1 receptor antagonist and increasing monocyte activation early posttransplant may be involved in pathogenesis of delayed graft function in renal transplant recipients, Clin Transplant, vol.24, p.415, 2010.

F. Lin, A. Moran, and P. Igarashi, Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney, J Clin Invest, vol.115, p.1756, 2005.

D. P. Basile, D. Donohoe, and K. Roethe, Renal ischemic injury results in permanent damage to peritubular capillaries and influences longterm function, Am J Physiol Renal Physiol, vol.281, p.887, 2001.

S. Y. Lee, M. Horbelt, and H. E. Mang, MMP-9 gene deletion mitigates microvascular loss in a model of ischemic acute kidney injury, Am J Physiol Renal Physiol, vol.301, p.101, 2011.

F. M. Steegh, M. A. Gelens, and F. H. Nieman, Early loss of peritubular capillaries after kidney transplantation, J Am Soc Nephrol, vol.22, p.1024, 2011.

D. P. Basile, D. L. Donohoe, and K. Roethe, Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage, Am J Physiol Renal Physiol, vol.284, p.338, 2003.

D. P. Basile, K. Fredrich, and B. Chelladurai, Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor, Am J Physiol Renal Physiol, vol.294, p.928, 2008.

K. Onoue, S. Uemura, and Y. Takeda, Reduction of circulating soluble Fms-like tyrosine kinase-1 plays a significant role in renal dysfunctionassociated aggravation of atherosclerosis, Circulation, vol.120, p.2470, 2009.

S. C. Hoffmann, R. L. Kampen, and S. Amur, Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemia-reperfusion injury, Transplantation, vol.74, p.916, 2002.

M. Sadeghi, V. Daniel, and R. Weimer, Differential early posttransplant cytokine responses in living and cadaver donor renal allografts, Transplantation, vol.75, p.1351, 2003.

D. P. Basile, The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function, Kidney Int, vol.72, p.151, 2007.

E. C. Leonard, J. L. Friedrich, and D. P. Basile, VEGF-121 preserves renal microvessel structure and ameliorates secondary renal disease following acute kidney injury, Am J Physiol Renal Physiol, vol.295, p.1648, 2008.

R. Thadhani, T. Kisner, and H. Hagmann, Pilot study of extracorporeal removal of soluble Fms-like tyrosine kinase 1 in preeclampsia, Circulation, vol.124, p.940, 2011.

A. Kaukinen, I. Lautenschlager, and H. Helin, Peritubular capillaries are rarefied in congenital nephrotic syndrome of the Finnish type, Kidney Int, vol.75, p.1099, 2009.