V. Lalioti, I. Sandoval, D. Cassio, and J. C. Duclos-vallee, Molecular pathology of Wilson's disease: a brief, J Hepatol, vol.53, pp.1151-1153, 2010.

M. L. Schilsky, Wilson disease: current status and the future, Biochimie, vol.91, pp.1278-1281, 2009.

U. Merle, W. Stremmel, and J. Encke, Perspectives for gene therapy of Wilson disease, Curr Gene Ther, vol.7, pp.217-220, 2007.

V. Medici, V. G. Mirante, L. R. Fassati, M. Pompili, and D. Forti, Liver transplantation for Wilson's disease: The burden of neurological and psychiatric disorders, Liver Transpl, vol.11, pp.1056-1063, 2005.

S. M. Kenney and D. W. Cox, Sequence variation database for the Wilson disease copper transporter, ATP7B, Hum Mutat, vol.28, pp.1171-1177, 2007.

S. El-balkhi, J. M. Trocello, J. Poupon, P. Chappuis, and F. Massicot, Relative exchangeable copper: a new highly sensitive and highly specific biomarker for Wilson's disease diagnosis, Clin Chim Acta, vol.412, pp.2254-2260, 2011.

T. I. Venelinov, J. H. Beattie, J. R. Dainty, W. J. Hollands, and S. J. Fairweather-tait, Stable isotope pilot study of exchangeable copper kinetics in human blood plasma, J Trace Elem Med Biol, vol.21, pp.138-140, 2007.

W. T. Buckley and R. A. Vanderpool, Analytical variables affecting exchangeable copper determination in blood plasma, Biometals, vol.21, pp.601-612, 2008.

S. El-balkhi, J. Poupon, J. M. Trocello, F. Massicot, and F. Woimant, Human plasma copper proteins speciation by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. Solutions for columns calibration by sulfur detection, Anal Chem, vol.82, pp.6904-6910, 2010.

J. W. Kim, J. H. Kim, J. K. Seo, J. S. Ko, and J. Y. Chang, Genetically confirmed Wilson disease in a 9-month old boy with elevations of aminotransferases, World J Hepatol, vol.5, pp.156-159, 2013.

P. Chappuis, J. Callebert, V. Quignon, F. Woimant, and J. L. Laplanche, Late neurological presentations of Wilson disease patients in French population and identification of 8 novel mutations in the ATP7B gene, J Trace Elem Med Biol, vol.21, pp.37-42, 2007.

W. I. Vonk, C. Wijmenga, and B. Van-de-sluis, Relevance of animal models for understanding mammalian copper homeostasis, Am J Clin Nutr, vol.88, pp.840-845, 2008.

M. C. Yoshida, R. Masuda, M. Sasaki, N. Takeichi, and H. Kobayashi, New mutation causing hereditary hepatitis in the laboratory rat, J Hered, vol.78, pp.361-365, 1987.

K. T. Suzuki, S. Kanno, S. Misawa, and Y. Aoki, Copper metabolism leading to and following acute hepatitis in LEC rats, Toxicology, vol.97, pp.81-92, 1995.

R. Masuda, M. C. Yoshida, M. Sasaki, K. Dempo, and M. Mori, Hereditary hepatitis of LEC rats is controlled by a single autosomal recessive gene, Lab Anim, vol.22, pp.166-169, 1988.

M. Hayashi, S. Fuse, D. Endoh, N. Horiguchi, and K. Nakayama, Accumulation of copper induces DNA strand breaks in brain cells of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson Disease, Exp Anim, vol.55, pp.419-426, 2006.

J. Wu, J. R. Forbes, H. S. Chen, and D. W. Cox, The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene, Nat Genet, vol.7, pp.541-545, 1994.

R. Siaj, V. Sauer, S. Stoppeler, H. U. Spiegel, and G. Kohler, Dietary copper triggers onset of fulminant hepatitis in the Long-Evans cinnamon rat model, World J Gastroenterol, vol.18, pp.5542-5550, 2013.

Y. Li, Y. Togashi, S. Sato, T. Emoto, and J. H. Kang, Spontaneous hepatic copper accumulation in Long-Evans Cinnamon rats with hereditary hepatitis. A model of Wilson's disease, J Clin Invest, vol.87, pp.1858-1861, 1991.

K. Sone, M. Maeda, K. Wakabayashi, N. Takeichi, and M. Mori, Inhibition of hereditary hepatitis and liver tumor development in Long-Evans cinnamon rats by the copper-chelating agent trientine dihydrochloride, Hepatology, vol.23, pp.764-770, 1996.

R. N. Fong, B. P. Gonzalez, I. C. Fuentealba, and M. G. Cherian, Role of tumor necrosis factor-alpha in the development of spontaneous hepatic toxicity in Long-Evans Cinnamon rats, Toxicol Appl Pharmacol, vol.200, pp.121-130, 2004.

E. Carstens and G. P. Moberg, Recognizing pain and distress in laboratory animals, ILAR J, vol.41, pp.62-71, 2000.

U. Merle, C. Eisenbach, K. H. Weiss, S. Tuma, and W. Stremmel, Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson's disease, J Hepatol, vol.51, pp.925-930, 2009.

K. H. Schosinsky, H. P. Lehmann, and M. F. Beeler, Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride, Clin Chem, vol.20, pp.1556-1563, 1974.

S. El-balkhi, J. Poupon, J. M. Trocello, A. Leyendecker, and F. Massicot, Determination of ultrafiltrable and exchangeable copper in plasma: stability and reference values in healthy subjects, Anal Bioanal Chem, vol.394, pp.1477-1484, 2009.

K. Terada, T. Nakako, X. L. Yang, M. Iida, and N. Aiba, Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA, J Biol Chem, vol.273, pp.1815-1820, 1998.

N. Kasai, T. Osanai, I. Miyoshi, E. Kamimura, and M. C. Yoshida, Clinicopathological studies of LEC rats with hereditary hepatitis and hepatoma in the acute phase of hepatitis, Lab Anim Sci, vol.40, pp.502-505, 1990.

M. Y. Bartee and S. Lutsenko, Hepatic copper-transporting ATPase ATP7B: function and inactivation at the molecular and cellular level, Biometals, vol.20, pp.627-637, 2007.

L. W. Gray, F. Peng, S. A. Molloy, V. S. Pendyala, and A. Muchenditsi, Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load, PLoS One, vol.7, p.38327, 2012.

V. Yuzbasiyan-gurkan, A. Grider, T. Nostrant, R. J. Cousins, and G. J. Brewer, Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction, J Lab Clin Med, vol.120, pp.380-386, 1992.

L. A. Anderson, S. L. Hakojarvi, and S. K. Boudreaux, Zinc acetate treatment in Wilson's disease, Ann Pharmacother, vol.32, pp.78-87, 1998.

R. Bahde, S. Kapoor, K. K. Bhargava, M. L. Schilsky, and C. J. Palestro, PET with 64Cu-histidine for noninvasive diagnosis of biliary copper excretion in Long-Evans cinnamon rat model of Wilson disease, J Nucl Med, vol.53, pp.961-968, 2012.

Y. Meng, I. Miyoshi, M. Hirabayashi, M. Su, and Y. Mototani, Restoration of copper metabolism and rescue of hepatic abnormalities in LEC rats, an animal model of Wilson disease, by expression of human ATP7B gene, Biochim Biophys Acta, vol.1690, pp.208-219, 2004.