G. C. Tsokos, Systemic lupus erythematosus, N. Engl. J. Med, vol.365, pp.2110-2121, 2011.

G. J. Pons-estel, G. S. Alarcón, L. Scofield, L. Reinlib, and G. S. Cooper, Understanding the epidemiology and progression of systemic lupus erythematosus, Semin. Arthritis Rheum, vol.39, pp.257-268, 2010.

Z. Liu and A. Davidson, Taming lupus-a new understanding of pathogenesis is leading to clinical advances, Nat. Med, vol.18, pp.871-882, 2012.

L. Bennett, A. K. Palucka, E. Arce, V. Cantrell, J. Borvak et al., Interferon and granulopoiesis signatures in systemic lupus erythematosus blood, J. Exp. Med, vol.197, pp.711-723, 2003.

G. Murphy, L. Lisnevskaia, and D. Isenberg, Systemic lupus erythematosus and other autoimmune rheumatic diseases: challenges to treatment, Lancet, vol.382, pp.809-818, 2013.

S. V. Navarra, R. M. Guzmán, A. E. Gallacher, S. Hall, R. A. Levy et al., Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, Lancet, vol.377, pp.721-731, 2011.

R. Furie, M. Petri, O. Zamani, R. Cervera, D. J. Wallace et al., A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus, Arthritis Rheum, vol.63, pp.3918-3930, 2011.

Y. Yao, L. Richman, B. W. Higgs, C. A. Morehouse, M. De-los-reyes et al., Neutralization of interferon-alpha/ beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus, Arthritis Rheum, vol.60, pp.1785-1796, 2009.

G. G. Illei, Y. Shirota, C. H. Yarboro, J. Daruwalla, E. Tackey et al., Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosageescalation study, Arthritis Rheum, vol.62, pp.542-552, 2010.

E. Rouvier, M. F. Luciani, M. G. Mattéi, F. Denizot, and P. Golstein, CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene, J. Immunol, vol.150, pp.5445-5456, 1993.

C. T. Weaver, R. D. Hatton, P. R. Mangan, and L. E. Harrington, IL17Family cytokines and the expanding diversity of effector T cell lineages, Annu. Rev. Immunol, vol.25, pp.821-852, 2007.

S. L. Gaffen, Structure and signalling in the IL-17 receptor family, Nat. Rev. Immunol, vol.9, pp.556-567, 2009.

C. Liu, W. Qian, Y. Qian, N. V. Giltiay, Y. Lu et al., Act1, a U-box E3 ubiquitin ligase for IL-17 signaling, Sci. Signal, vol.2, p.63, 2009.

J. Hartupee, C. Liu, M. Novotny, X. Li, and T. Hamilton, IL-17 enhances chemokine gene expression through mRNA stabilization, J. Immunol, vol.179, pp.4135-4141, 2007.

S. Zhu and Y. Qian, IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential, Clin. Sci, vol.122, pp.487-511, 2012.

K. Bulek, C. Liu, S. Swaidani, L. Wang, R. C. Page et al., The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation, Nat. Immunol, vol.12, pp.844-852, 2011.

D. Sun, M. Novotny, K. Bulek, C. Liu, X. Li et al., Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF), Nat. Immunol, vol.12, pp.853-860, 2011.

C. T. Weaver, C. O. Elson, L. A. Fouser, and J. K. Kolls, The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin, Annu. Rev. Pathol, vol.8, pp.477-512, 2013.

A. Puel, R. Döffinger, A. Natividad, M. Chrabieh, G. Barcenasmorales et al., Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I, J. Exp. Med, vol.207, pp.291-297, 2010.

A. Puel, S. Cypowyj, J. Bustamante, J. F. Wright, L. Liu et al., Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity, Science, vol.332, pp.65-68, 2011.

L. Liu, S. Okada, X. Kong, A. Y. Kreins, S. Cypowyj et al., Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis, J. Exp. Med, vol.208, pp.1635-1648, 2011.

B. Boisson, C. Wang, V. Pedergnana, L. Wu, S. Cypowyj et al., An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis, Immunity, vol.39, pp.676-686, 2013.

C. S. Ma, G. Y. Chew, N. Simpson, A. Priyadarshi, M. Wong et al., Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3, J. Exp. Med, vol.205, pp.1551-1557, 2008.

F. Fossiez, O. Djossou, P. Chomarat, L. Flores-romo, S. Aityahia et al., T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines, J. Exp. Med, vol.183, pp.2593-2603, 1996.

L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy et al.,

, effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, vol.6, pp.1123-1132, 2005.

H. Park, Z. Li, X. O. Yang, S. H. Chang, R. Nurieva et al., A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17, Nat. Immunol, vol.6, pp.1133-1141, 2005.

I. I. Ivanov, B. S. Mckenzie, L. Zhou, C. E. Tadokoro, A. Lepelley et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells, Cell, vol.126, pp.1121-1133, 2006.

E. Bettelli, Y. Carrier, W. Gao, T. Korn, T. B. Strom et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells, Nature, vol.441, pp.235-238, 2006.

P. R. Mangan, L. E. Harrington, D. B. O'quinn, W. S. Helms, D. C. Bullard et al., Transforming growth factor-beta induces development of the T(H)17 lineage, Nature, vol.441, pp.231-234, 2006.

M. Veldhoen, R. J. Hocking, C. J. Atkins, R. M. Locksley, and B. Stockinger, TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells, Immunity, vol.24, pp.179-189, 2006.

E. Volpe, N. Servant, R. Zollinger, S. I. Bogiatzi, P. Hupé et al., A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses, Nat. Immunol, vol.9, pp.650-657, 2008.

M. J. Mcgeachy, Y. Chen, C. M. Tato, A. Laurence, B. Joyceshaikh et al., The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo, Nat. Immunol, vol.10, pp.314-324, 2009.

D. J. Cua, J. Sherlock, Y. Chen, C. A. Murphy, B. Joyce et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain, Nature, vol.421, pp.744-748, 2003.

C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med, vol.201, pp.233-240, 2005.

C. A. Murphy, C. L. Langrish, Y. Chen, W. Blumenschein, T. Mcclanahan et al., Divergent pro-and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation, J. Exp. Med, vol.198, pp.1951-1957, 2003.

M. J. Mcgeachy, K. S. Bak-jensen, Y. Chen, C. M. Tato, W. Blumenschein et al., TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology, Nat. Immunol, vol.8, pp.1390-1397, 2007.

E. Esplugues, S. Huber, N. Gagliani, A. E. Hauser, T. Town et al., Control of TH17 cells occurs in the small intestine, Nature, vol.475, pp.514-518, 2011.

C. E. Zielinski, F. Mele, D. Aschenbrenner, D. Jarrossay, F. Ronchi et al., Pathogen-induced human TH17 cells produce IFN-? or IL-10 and are regulated by IL-1?, Nature, vol.484, pp.514-518, 2012.

M. El-behi, B. Ciric, H. Dai, Y. Yan, M. Cullimore et al., The encephalitogenicity of T(H)17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF, Nat. Immunol, vol.12, pp.568-575, 2011.

L. Codarri, G. Gyülvészi, V. Tosevski, L. Hesske, A. Fontana et al., ROR?t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation, Nat. Immunol, vol.12, pp.560-567, 2011.

Y. Lee, A. Awasthi, N. Yosef, F. J. Quintana, S. Xiao et al., Induction and molecular signature of pathogenic TH17 cells, Nat. Immunol, vol.13, pp.991-999, 2012.

K. Hirota, J. H. Duarte, M. Veldhoen, E. Hornsby, Y. Li et al., Fate mapping of IL-17-producing T cells in inflammatory responses, Nat. Immunol, vol.12, pp.255-263, 2011.

S. C. Liang, X. Tan, D. P. Luxenberg, R. Karim, K. Dunussijoannopoulos et al., Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides, J. Exp. Med, vol.203, pp.2271-2279, 2006.

K. Wolk, H. S. Haugen, W. Xu, E. Witte, K. Waggie et al., IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not, J. Mol. Med, vol.87, pp.523-536, 2009.

G. F. Sonnenberg, M. G. Nair, T. J. Kirn, C. Zaph, L. A. Fouser et al., Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A, J. Exp. Med, vol.207, pp.1293-1305, 2010.

A. Peters, Y. Lee, and V. K. Kuchroo, The many faces of Th17 cells, Curr. Opin. Immunol, vol.23, pp.702-706, 2011.

D. J. Cua and C. M. Tato, Innate IL-17-producing cells: the sentinels of the immune system, Nat. Rev. Immunol, vol.10, pp.479-489, 2010.

C. E. Sutton, L. A. Mielke, and K. H. Mills, IL-17-producing ?? T cells and innate lymphoid cells, Eur. J. Immunol, vol.42, pp.2221-2231, 2012.

T. J. Kenna and M. A. Brown, The role of IL-17-secreting mast cells in inflammatory joint disease, Nat. Rev. Rheumatol, vol.9, pp.375-379, 2013.

J. P. Sherlock, B. Joyce-shaikh, S. P. Turner, C. Chao, M. Sathe et al., IL-23 induces spondyloarthropathy by acting on ROR-?t + CD3 + CD4-CD8-entheseal resident T cells, Nat. Med, vol.18, pp.1069-1076, 2012.

H. Appel, R. Maier, P. Wu, R. Scheer, A. Hempfing et al., Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response, Arthritis Res. Ther, vol.13, p.95, 2011.

T. Noordenbos, N. Yeremenko, I. Gofita, M. Van-de-sande, P. P. Tak et al., Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis, Arthritis Rheum, vol.64, pp.99-109, 2012.

T. J. Kenna, S. I. Davidson, R. Duan, L. A. Bradbury, J. Mcfarlane et al., Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive ?/? T cells in patients with active ankylosing spondylitis, Arthritis Rheum, vol.64, pp.1420-1429, 2012.

E. Sánchez, B. Rueda, J. L. Callejas, J. M. Sabio, N. Ortegocenteno et al., Analysis of interleukin-23 receptor (IL23R) gene polymorphisms in systemic lupus erythematosus, Tissue Antigens, vol.70, pp.233-237, 2007.

H. Kim, I. Kim, J. O. Kim, J. S. Bae, H. D. Shin et al., No association between interleukin 23 receptor gene polymorphisms and systemic lupus erythematosus, Rheumatol. Int, vol.30, pp.33-38, 2009.

A. L. Sestak, B. G. Fürnrohr, J. B. Harley, J. T. Merrill, and B. Namjou, The genetics of systemic lupus erythematosus and implications for targeted therapy, Ann. Rheum. Dis, vol.70, pp.37-43, 2011.

B. Yu, M. Guan, Y. Peng, Y. Shao, C. Zhang et al., Copy number variations of interleukin-17 F, interleukin-21, and interleukin-22 are associated with systemic lupus erythematosus, Arthritis Rheum, vol.63, pp.3487-3492, 2011.

C. K. Wong, L. C. Lit, L. S. Tam, E. K. Li, P. T. Wong et al., Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity, Clin. Immunol, vol.127, pp.385-393, 2008.

F. Cheng, Z. Guo, H. Xu, D. Yan, and Q. Li, Decreased plasma IL22 levels, but not increased IL17 and IL23 levels, correlate with disease activity in patients with systemic lupus erythematosus, Ann. Rheum. Dis, vol.68, pp.604-606, 2009.

X. Q. Chen, Y. C. Yu, H. H. Deng, J. Z. Sun, Z. Dai et al., Plasma IL-17A is increased in new-onset SLE patients and associated with disease activity, J. Clin. Immunol, vol.30, pp.221-225, 2010.

X. Zhao, H. Pan, H. Yuan, W. Zhang, X. Li et al., Increased serum interleukin 17 in patients with systemic lupus erythematosus, Mol. Biol. Rep, vol.37, pp.81-85, 2010.

C. Tanasescu, E. Balanescu, P. Balanescu, R. Olteanu, C. Badea et al., IL-17 in cutaneous lupus erythematosus, Eur. J. Intern. Med, vol.21, pp.202-207, 2010.

F. B. Vincent, M. Northcott, A. Hoi, F. Mackay, and E. F. Morand, Clinical associations of serum interleukin-17 in systemic lupus erythematosus, Arthritis Res. Ther, vol.15, p.97, 2013.

X. Yang, H. Wang, X. Zhao, L. Wang, Q. Lv et al., Th22, but not Th17 might be a good index to predict the tissue involvement of systemic lupus erythematosus, J. Clin. Immunol, vol.33, pp.767-774, 2013.

K. Kurasawa, K. Hirose, H. Sano, H. Endo, H. Shinkai et al., Increased interleukin-17 production in patients with systemic sclerosis, Arthritis Rheum, vol.43, pp.2455-2463, 2000.

J. C. Crispín, M. Oukka, G. Bayliss, R. A. Cohen, C. A. Van-beek et al., Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys, J. Immunol, vol.181, pp.8761-8766, 2008.

J. Yang, Y. Chu, X. Yang, D. Gao, L. Zhu et al., Th17 and natural Treg cell population dynamics in systemic lupus erythematosus, Arthritis Rheum, vol.60, pp.1472-1483, 2009.

S. H. Oh, H. J. Roh, J. E. Kwon, S. H. Lee, J. Y. Kim et al., Expression of interleukin-17 is correlated with interferon-? expression in cutaneous lesions of lupus erythematosus, Clin. Exp. Dermatol, vol.36, pp.512-520, 2011.

K. Shah, W. Lee, S. Lee, S. H. Kim, S. W. Kang et al., Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus, Arthritis Res. Ther, vol.12, p.53, 2010.

S. Dolff, M. Bijl, M. G. Huitema, P. C. Limburg, C. G. Kallenberg et al., Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus, vol.141, pp.197-204, 2011.

Q. Xing, B. Wang, H. Su, J. Cui, and J. Li, Elevated Th17 cells are accompanied by FoxP3 + Treg cells decrease in patients with lupus nephritis, Rheumatol. Int, vol.32, pp.949-958, 2012.

E. V. Acosta-rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells, Nat. Immunol, vol.8, pp.639-646, 2007.

H. Pan, X. Zhao, H. Yuan, W. Zhang, X. Li et al., Decreased serum IL-22 levels in patients with systemic lupus erythematosus, Clin. Chim. Acta Int. J. Clin. Chem, vol.401, pp.179-180, 2009.

L. Zhao, Z. Jiang, Y. Jiang, N. Ma, K. Wang et al., IL-22 + CD4+ T-cells in patients with active systemic lupus erythematosus, Exp. Biol. Med. (Maywood), pp.193-199, 2013.

T. Duhen, R. Geiger, D. Jarrossay, A. Lanzavecchia, and F. Sallusto, Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells, Nat. Immunol, vol.10, pp.857-863, 2009.

S. Trifari, C. D. Kaplan, E. H. Tran, N. K. Crellin, and H. Spits, Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells, Nat. Immunol, vol.10, pp.864-871, 2009.

S. Huber, N. Gagliani, L. A. Zenewicz, F. J. Huber, L. Bosurgi et al., IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine, Nature, vol.491, pp.259-263, 2012.

J. C. Martin, G. Bériou, M. Heslan, C. Chauvin, L. Utriainen et al., Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid, Mucosal Immunol, vol.7, pp.101-113, 2013.

S. Shivakumar, G. C. Tsokos, and S. K. Datta, T cell receptor alpha/ beta expressing double-negative (CD4-/CD8-) and CD4 + T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis, J. Immunol, vol.143, pp.103-112, 1989.

J. C. Crispín and G. C. Tsokos, Human TCR-alpha beta+ CD4-CD8-T cells can derive from CD8+ T cells and display an inflammatory effector phenotype, J. Immunol, vol.183, pp.4675-4681, 2009.

E. E. Solomou, Y. T. Juang, M. F. Gourley, G. M. Kammer, and G. C. Tsokos, Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus, J. Immunol, vol.166, pp.4216-4222, 2001.

V. C. Kyttaris, Y. Wang, Y. T. Juang, A. Weinstein, and G. C. Tsokos, CAMP response element modulator a expression in patients with systemic lupus erythematosus, Lupus, vol.15, pp.840-844, 2006.

C. M. Hedrich, T. Rauen, J. C. Crispin, T. Koga, C. Ioannidis et al., cAMP-responsive element modulator ? (CREM?) trans-represses the transmembrane glycoprotein CD8 and contributes to the generation of CD3 + CD4-CD8-T cells in health and disease, J. Biol. Chem, vol.288, pp.31880-31887, 2013.

C. M. Hedrich, J. C. Crispin, T. Rauen, C. Ioannidis, T. Koga et al., cAMP responsive element modulator (CREM)? mediates chromatin remodeling of CD8 during the generation of CD3+CD4-CD8-T cells, J. Biol. Chem, vol.288, pp.1880-1887, 2013.

Y. Wang, S. Ito, Y. Chino, D. Goto, I. Matsumoto et al., Laser microdissection-based analysis of cytokine balance in the kidneys of patients with lupus nephritis, Clin. Exp. Immunol, vol.159, pp.1-10, 2010.

H. Kebir, K. Kreymborg, I. Ifergan, A. Dodelet-devillers, R. Cayrol et al., Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation, Nat. Med, vol.13, pp.1173-1175, 2007.

E. Villanueva, S. Yalavarthi, C. C. Berthier, J. B. Hodgin, R. Khandpur et al., Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus, J. Immunol, vol.187, pp.538-552, 2011.

M. Linker-israeli, R. J. Deans, D. J. Wallace, J. Prehn, T. Ozerichen et al., Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis, J. Immunol, vol.147, pp.117-123, 1991.

F. J. Barrat, T. Meeker, J. Gregorio, J. H. Chan, S. Uematsu et al., Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus, J. Exp. Med, vol.202, pp.1131-1139, 2005.

P. Blanco, A. K. Palucka, M. Gill, V. Pascual, and J. Banchereau, Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus, Science, vol.294, pp.1540-1543, 2001.

C. Yu, W. Peng, J. Oldenburg, J. Hoch, T. Bieber et al., Human plasmacytoid dendritic cells support Th17 cell effector function in response to TLR7 ligation, J. Immunol, vol.184, pp.1159-1167, 2010.

G. S. Garcia-romo, S. Caielli, B. Vega, J. Connolly, F. Allantaz et al., Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus, Sci. Transl. Med, vol.3, pp.73-93, 2011.

R. Lande, D. Ganguly, V. Facchinetti, L. Frasca, C. Conrad et al., Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus, Sci. Transl. Med, vol.3, pp.73-92, 2011.

E. Segura, M. Touzot, A. Bohineust, A. Cappuccio, G. Chiocchia et al., Human inflammatory dendritic cells induce Th17 cell differentiation, Immunity, vol.38, pp.336-348, 2013.

E. K. Persson, H. Uronen-hansson, M. Semmrich, A. Rivollier, K. Hägerbrand et al., IRF4 transcription-factordependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation, Immunity, vol.38, pp.958-969, 2013.

A. Schlitzer, N. Mcgovern, P. Teo, T. Zelante, K. Atarashi et al., IRF4 transcription factor-dependent CD11b(+) dendritic cells in human and mouse control mucosal IL-17 cytokine responses, Immunity, vol.38, pp.970-983, 2013.

P. R. Taylor, S. Roy, S. M. Leal, Y. Sun, S. J. Howell et al., Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, ROR?t and dectin-2, Nat. Immunol, vol.15, pp.143-151, 2013.

S. Smith, J. N. Gabhann, R. Higgs, K. Stacey, M. Wahrenherlenius et al., Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus, Arthritis Rheum, vol.64, pp.1601-1609, 2012.

M. S. Shin, Y. Kang, N. Lee, E. R. Wahl, S. H. Kim et al., Self double-stranded (ds)DNA induces IL-1? production from human monocytes by activating NLRP3 inflammasome in the presence of anti-dsDNA antibodies, J. Immunol, vol.190, pp.1407-1415, 2013.

J. Cros, N. Cagnard, K. Woollard, N. Patey, S. Zhang et al., Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, Immunity, vol.33, pp.375-386, 2010.

A. Hänsel, C. Günther, W. Baran, M. Bidier, H. Lorenz et al., Human 6-sulfo LacNAc (slan) dendritic cells have molecular and functional features of an important proinflammatory cell type in lupus erythematosus, J. Autoimmun, vol.40, pp.1-8, 2013.

A. Hänsel, C. Günther, J. Ingwersen, J. Starke, M. Schmitz et al., Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong TH17/TH1 T-cell responses, J. Allergy Clin. Immunol, vol.127, pp.1-9, 2011.

J. Alcocer-varela and D. Alarcón-segovia, Decreased production of and response to interleukin-2 by cultured lymphocytes from patients with systemic lupus erythematosus, J. Clin. Invest, vol.69, pp.1388-1392, 1982.

A. Laurence, C. M. Tato, T. S. Davidson, Y. Kanno, Z. Chen et al., Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation, Immunity, vol.26, pp.371-381, 2007.

C. M. Hedrich, J. C. Crispin, T. Rauen, C. Ioannidis, S. A. Apostolidis et al., cAMP response element modulator ? controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.16606-16611, 2012.

T. Rauen, C. M. Hedrich, Y. Juang, K. Tenbrock, and G. C. , Tsokos, cAMP-responsive element modulator (CREM)? protein induces interleukin 17A expression and mediates epigenetic alterations at the interleukin-17A gene locus in patients with systemic lupus erythematosus, J. Biol. Chem, vol.286, pp.43437-43446, 2011.

V. R. Moulton and G. C. Tsokos, Abnormalities of T cell signaling in systemic lupus erythematosus, Arthritis Res. Ther, vol.13, p.207, 2011.

M. Chatterjee, T. Rauen, K. Kis-toth, V. C. Kyttaris, C. M. Hedrich et al., Increased expression of SLAM receptors SLAMF3 and SLAMF6 in systemic lupus erythematosus T lymphocytes promotes Th17 differentiation, J. Immunol, vol.188, pp.1206-1212, 2012.

J. Isgro, S. Gupta, E. Jacek, T. Pavri, R. Duculan et al., Enhanced rho-associated protein kinase activation in patients with systemic lupus erythematosus, Arthritis Rheum, vol.65, pp.1592-1602, 2013.

Z. Zhang, V. C. Kyttaris, and G. C. Tsokos, The role of IL-23/IL-17 axis in lupus nephritis, J. Immunol, vol.183, pp.3160-3169, 2009.

V. C. Kyttaris, Z. Zhang, V. K. Kuchroo, M. Oukka, and G. C. Tsokos, Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice, J. Immunol, vol.184, pp.4605-4609, 2010.

M. Kido, S. Takeuchi, N. Sugiyama, H. Esaki, H. Nakashima et al., T cell-specific overexpression of interleukin-27 receptor ? subunit (WSX-1) prevents spontaneous skin inflammation in MRL/lpr mice, Br. J. Dermatol, vol.164, pp.1214-1220, 2011.

H. Hsu, P. Yang, J. Wang, Q. Wu, R. Myers et al., Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice, Nat. Immunol, vol.9, pp.166-175, 2008.

A. Espinosa, V. Dardalhon, S. Brauner, A. Ambrosi, R. Higgs et al., Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway, J. Exp. Med, vol.206, pp.1661-1671, 2009.

P. Pisitkun, H. Ha, H. Wang, E. Claudio, C. C. Tivy et al., Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis, Immunity, vol.37, pp.1104-1115, 2012.

A. Peters, L. A. Pitcher, J. M. Sullivan, M. Mitsdoerffer, S. E. Acton et al., Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation, Immunity, vol.35, pp.986-996, 2011.

K. Hirota, J. Turner, M. Villa, J. H. Duarte, J. Demengeot et al., Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses, Nat. Immunol, vol.14, pp.372-379, 2013.

J. R. Chan, W. Blumenschein, E. Murphy, C. Diveu, M. Wiekowski et al., IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis, J. Exp. Med, vol.203, pp.2577-2587, 2006.

H. L. Rizzo, S. Kagami, K. G. Phillips, S. E. Kurtz, S. L. Jacques et al., IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A, J. Immunol, vol.186, pp.1495-1502, 2011.

C. L. Leonardi, A. B. Kimball, K. A. Papp, N. Yeilding, C. Guzzo et al., Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, Lancet, vol.371, issue.1, pp.1665-1674, 2008.

K. A. Papp, R. G. Langley, M. Lebwohl, G. G. Krueger, P. Szapary et al., Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, Lancet, vol.371, issue.2, pp.1675-1684, 2008.

I. B. Mcinnes, A. Kavanaugh, A. B. Gottlieb, L. Puig, P. Rahman et al., Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial, Lancet, vol.382, pp.780-789, 2013.

C. Ritchlin, P. Rahman, A. Kavanaugh, I. B. Mcinnes, L. Puig et al., Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial, Ann. Rheum. Dis, vol.73, pp.990-999, 2014.

D. Poddubnyy, K. A. Hermann, J. Callhoff, J. Listing, and J. Sieper, Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS), Ann. Rheum. Dis, vol.73, pp.817-823, 2014.

W. J. Sandborn, B. G. Feagan, R. N. Fedorak, E. Scherl, M. R. Fleisher et al., A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease, Gastroenterology, vol.135, pp.1130-1141, 2008.

W. J. Sandborn, C. Gasink, L. Gao, M. A. Blank, J. Johanns et al., Ustekinumab induction and maintenance therapy in refractory Crohn's disease, N. Engl. J. Med, vol.367, pp.1519-1528, 2012.

A. Souza, T. Ali-shaw, B. E. Strober, and A. G. Franks, Successful treatment of subacute lupus erythematosus with ustekinumab, Arch. Dermatol, vol.147, pp.896-898, 2011.

D. Winchester, K. C. Duffin, and C. Hansen, Response to ustekinumab in a patient with both severe psoriasis and hypertrophic cutaneous lupus, Lupus, vol.21, pp.1007-1010, 2012.

C. Dahl, C. Johansen, K. Kragballe, and A. B. Olesen, Ustekinumab in the treatment of refractory chronic cutaneous lupus erythematosus: a case report, Acta Derm. Venereol, vol.93, pp.368-369, 2013.

W. Hueber, D. D. Patel, T. Dryja, A. M. Wright, I. Koroleva et al., Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis, Sci. Transl. Med, vol.2, pp.52-72, 2010.

K. A. Papp, R. G. Langley, B. Sigurgeirsson, M. Abe, D. R. Baker et al., Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study, Br. J. Dermatol, vol.168, pp.412-421, 2013.

C. Leonardi, R. Matheson, C. Zachariae, G. Cameron, L. Li et al., Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis, N. Engl. J. Med, vol.366, pp.1190-1199, 2012.

K. A. Papp, C. Leonardi, A. Menter, J. Ortonne, J. G. Krueger et al., Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis, N. Engl. J. Med, vol.366, pp.1181-1189, 2012.

D. Baeten, X. Baraliakos, J. Braun, J. Sieper, P. Emery et al., Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial, Lancet, vol.382, pp.1705-1713, 2013.

I. B. Mcinnes, J. Sieper, J. Braun, P. Emery, D. Van-der-heijde et al., Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial, Ann. Rheum. Dis, vol.73, pp.349-356, 2014.

D. L. Baeten and V. K. Kuchroo, How cytokine networks fuel inflammation: interleukin-17 and a tale of two autoimmune diseases, Nat. Med, vol.19, pp.824-825, 2013.

M. C. Genovese, P. Durez, H. B. Richards, J. Supronik, E. Dokoupilova et al., Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study, Ann. Rheum. Dis, vol.72, pp.863-869, 2013.

M. C. Genovese, M. Greenwald, C. Cho, A. Berman, L. Jin et al., Phase 2 randomized study of subcutaneous ixekizumab, an Anti-IL-17 monoclonal antibody, in biologic-naïve or TNF-IR patients with rheumatoid arthritis, Arthritis Rheumatol, 2014.

W. Hueber, B. E. Sands, S. Lewitzky, M. Vandemeulebroecke, W. Reinisch et al., Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, doubleblind placebo-controlled trial, Gut, vol.61, pp.1693-1700, 2012.

M. Voulgarelis and A. G. Tzioufas, Pathogenetic mechanisms in the initiation and perpetuation of Sjögren's syndrome, Nat. Rev. Rheumatol, vol.6, pp.529-537, 2010.

T. Sumida, H. Tsuboi, M. Iizuka, T. Hirota, H. Asashima et al., The role of M3 muscarinic acetylcholine receptor reactive T cells in Sjögren's syndrome: a critical review, J. Autoimmun, vol.51, pp.44-50, 2014.

C. Q. Nguyen, H. Yin, B. H. Lee, W. C. Carcamo, J. A. Chiorini et al., Pathogenic effect of interleukin-17A in induction of Sjögren's syndrome-like disease using adenovirus-mediated gene transfer, Arthritis Res. Ther, vol.12, p.220, 2010.