H. Nair, Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis, Lancet, vol.375, issue.9725, pp.1545-1555, 2010.

E. O. Ohuma, The natural history of respiratory syncytial virus in a birth cohort: The influence of age and previous infection on reinfection and disease, Am J Epidemiol, vol.176, issue.9, pp.794-802, 2012.

F. W. Henderson, A. M. Collier, C. Wa, . Jr, and F. W. Denny, Respiratory-syncytial-virus infections, reinfections and immunity. A prospective, longitudinal study in young children, N Engl J Med, vol.300, issue.10, pp.530-534, 1979.

D. J. Nokes, Respiratory syncytial virus infection and disease in infants and young children observed from birth in Kilifi District, Clin Infect Dis, vol.46, issue.1, pp.50-57, 2008.

E. E. Walsh, Respiratory syncytial virus infection in adults, Semin Respir Crit Care Med, vol.32, issue.4, pp.423-432, 2011.

J. P. Devincenzo, Viral load drives disease in humans experimentally infected with respiratory syncytial virus, Am J Respir Crit Care Med, vol.182, issue.10, pp.1305-1314, 2010.

T. P. Welliver, Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses, J Infect Dis, vol.195, issue.8, pp.1126-1136, 2007.

K. K. Mckinstry, Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms, J Clin Invest, vol.122, issue.8, pp.2847-2856, 2012.

K. Boonnak and K. Subbarao, Memory CD4+ T cells: Beyond "helper" functions, J Clin Invest, vol.122, issue.8, pp.2768-2770, 2012.

M. A. Rasheed, Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells, J Virol, vol.87, issue.13, pp.7737-7746, 2013.

A. Scholer, S. Hugues, A. Boissonnas, L. Fetler, and S. Amigorena, Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory, Immunity, vol.28, issue.2, pp.258-270, 2008.

D. A. Blair, Duration of antigen availability influences the expansion and memory differentiation of T cells, J Immunol, vol.187, issue.5, pp.2310-2321, 2011.

D. J. Zammit, L. S. Cauley, Q. M. Pham, and L. Lefrançois, Dendritic cells maximize the memory CD8 T cell response to infection, Immunity, vol.22, issue.5, pp.561-570, 2005.

T. Rothoeft, Differential response of human naive and memory/effector T cells to dendritic cells infected by respiratory syncytial virus, Clin Exp Immunol, vol.150, issue.2, pp.263-273, 2007.

J. Chang and T. J. Braciale, Respiratory syncytial virus infection suppresses lung CD8+ T-cell effector activity and peripheral CD8+ T-cell memory in the respiratory tract, Nat Med, vol.8, issue.1, pp.54-60, 2002.

A. Guerrero-plata, Differential response of dendritic cells to human metapneumovirus and respiratory syncytial virus, Am J Respir Cell Mol Biol, vol.34, issue.3, pp.320-329, 2006.

L. Nouën and C. , Infection and maturation of monocyte-derived human dendritic cells by human respiratory syncytial virus, human metapneumovirus, and human parainfluenza virus type 3, Virology, vol.385, issue.1, pp.169-182, 2009.

L. Nouën and C. , Effects of human respiratory syncytial virus, metapneumovirus, parainfluenza virus 3 and influenza virus on CD4+ T cell activation by dendritic cells, PLoS ONE, vol.5, issue.11, p.15017, 2010.

S. Munir, Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response, PLoS Pathog, vol.7, issue.4, p.1001336, 2011.

P. A. González, Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells, Proc Natl Acad Sci, vol.105, issue.39, pp.14999-15004, 2008.

A. Grakoui, The immunological synapse: A molecular machine controlling T cell activation, Science, vol.285, issue.5425, pp.221-227, 1999.

S. Y. Tseng, J. C. Waite, M. Liu, S. Vardhana, and M. L. Dustin, T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase C theta, J Immunol, vol.181, issue.7, pp.4852-4863, 2008.

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. L. Dustin, T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster, Immunity, vol.25, issue.1, pp.117-127, 2006.

A. Wiedemann, T-cell activation is accompanied by an ubiquitination process occurring at the immunological synapse, Immunol Lett, vol.98, issue.1, pp.57-61, 2005.

O. Milstein, Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse, J Biol Chem, vol.283, issue.49, pp.34414-34422, 2008.

K. Choudhuri, D. Wiseman, M. H. Brown, K. Gould, and P. A. Van-der-merwe, T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand, Nature, vol.436, issue.7050, pp.578-582, 2005.

T. Ilani, C. Khanna, M. Zhou, T. D. Veenstra, and A. Bretscher, Immune synapse formation requires ZAP-70 recruitment by ezrin and CD43 removal by moesin, J Cell Biol, vol.179, issue.4, pp.733-746, 2007.

B. Graf, T. Bushnell, and J. Miller, LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse, J Immunol, vol.179, issue.3, pp.1616-1624, 2007.

C. De-giuli, S. Kawai, S. Dales, and H. Hanafusa, Absence of surface projections of some noninfectious forms of RSV, Virology, vol.66, issue.1, pp.253-260, 1975.

L. K. Hallak, D. Spillmann, P. L. Collins, and M. E. Peeples, Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection, J Virol, vol.74, issue.22, pp.10508-10513, 2000.

P. Corish and C. Tyler-smith, Attenuation of green fluorescent protein half-life in mammalian cells, Protein Eng, vol.12, issue.12, pp.1035-1040, 1999.

A. Bermingham and P. L. Collins, The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription, Proc Natl Acad Sci, vol.96, issue.20, pp.11259-11264, 1999.

G. Brown, J. Aitken, H. W. Rixon, and R. J. Sugrue, Caveolin-1 is incorporated into mature respiratory syncytial virus particles during virus assembly on the surface of virusinfected cells, J Gen Virol, vol.83, pp.611-621, 2002.

S. G. Miller, L. Carnell, and H. H. Moore, Post-Golgi membrane traffic: Brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling, J Cell Biol, vol.118, issue.2, pp.267-283, 1992.

P. L. Collins and G. Mottet, Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus, J Gen Virol, vol.72, pp.3095-3101, 1991.

P. L. Collins and G. Mottet, Oligomerization and post-translational processing of glycoprotein G of human respiratory syncytial virus: Altered O-glycosylation in the presence of brefeldin A, J Gen Virol, vol.73, pp.849-863, 1992.

T. J. Utley, Respiratory syncytial virus uses a Vps4-independent budding mechanism controlled by Rab11-FIP2, Proc Natl Acad Sci, vol.105, issue.29, pp.10209-10214, 2008.

C. E. Jeffree, Ultrastructural analysis of the interaction between F-actin and respiratory syncytial virus during virus assembly, Virology, vol.369, issue.2, pp.309-323, 2007.

R. W. Doms, G. Russ, and J. W. Yewdell, Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum, J Cell Biol, vol.109, issue.1, pp.61-72, 1989.

T. R. Mempel, S. E. Henrickson, V. Andrian, and U. H. , T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases, Nature, vol.427, issue.6970, pp.154-159, 2004.

D. Skokos, Peptide-MHC potency governs dynamic interactions between T cells and dendritic cells in lymph nodes, Nat Immunol, vol.8, issue.8, pp.835-844, 2007.

R. S. Friedman, P. Beemiller, C. M. Sorensen, J. Jacobelli, and M. F. Krummel, Real-time analysis of T cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics, J Exp Med, vol.207, issue.12, pp.2733-2749, 2010.

P. A. Van-der-merwe, Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59, Biochemistry, vol.33, issue.33, pp.10149-10160, 1994.

J. R. James and R. D. Vale, Biophysical mechanism of T-cell receptor triggering in a reconstituted system, Nature, vol.487, issue.7405, pp.64-69, 2012.

R. Fearns, M. E. Peeples, and P. L. Collins, Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome, Virology, vol.236, issue.1, pp.188-201, 1997.

S. M. Horikami, J. Curran, D. Kolakofsky, and S. A. Moyer, Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro, J Virol, vol.66, issue.8, pp.4901-4908, 1992.

C. J. Buchholz, D. Spehner, R. Drillien, W. J. Neubert, and H. E. Homann, The conserved Nterminal region of Sendai virus nucleocapsid protein NP is required for nucleocapsid assembly, J Virol, vol.67, issue.10, pp.5803-5812, 1993.

J. Curran, J. B. Marq, and D. Kolakofsky, An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication, J Virol, vol.69, issue.2, pp.849-855, 1995.

N. Castagné, Biochemical characterization of the respiratory syncytial virus P-P and P-N protein complexes and localization of the P protein oligomerization domain, J Gen Virol, vol.85, pp.1643-1653, 2004.

A. P. Oliveira, Human respiratory syncytial virus N, P and M protein interactions in HEK-293T cells, Virus Res, vol.177, issue.1, pp.108-112, 2013.

J. C. Marie, Cell surface delivery of the measles virus nucleoprotein: A viral strategy to induce immunosuppression, J Virol, vol.78, issue.21, pp.11952-11961, 2004.

K. Ravanel, Measles virus nucleocapsid protein binds to FcgammaRII and inhibits human B cell antibody production, J Exp Med, vol.186, issue.2, pp.269-278, 1997.

C. R. Bangham, Human and murine cytotoxic T cells specific to respiratory syncytial virus recognize the viral nucleoprotein (N), but not the major glycoprotein (G), expressed by vaccinia virus recombinants, J Immunol, vol.137, issue.12, pp.3973-3977, 1986.

A. H. Cherrie, K. Anderson, G. W. Wertz, and P. J. Openshaw, Human cytotoxic T cells stimulated by antigen on dendritic cells recognize the N, SH, F, M, 22K, and 1b proteins of respiratory syncytial virus, J Virol, vol.66, issue.4, pp.2102-2110, 1992.

M. Venter, M. Rock, A. J. Puren, C. T. Tiemessen, J. E. Crowe et al., Respiratory syncytial virus nucleoprotein-specific cytotoxic T-cell epitopes in a South African population of diverse HLA types are conserved in circulating field strains, J Virol, vol.77, issue.13, pp.7319-7329, 2003.

D. S. Mcdermott, C. J. Knudson, and S. M. Varga, Determining the breadth of the respiratory syncytial virus-specific T cell response, J Virol, vol.88, issue.6, pp.3135-3143, 2014.

A. Lalvani, Rapid effector function in CD8+ memory T cells, J Exp Med, vol.186, issue.6, pp.859-865, 1997.

P. M. Gubser, Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch, Nat Immunol, vol.14, issue.10, pp.1064-1072, 2013.

K. Choudhuri, Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse, Nature, vol.507, issue.7490, pp.118-123, 2014.

L. K. Hallak, P. L. Collins, W. Knudson, and M. E. Peeples, Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection, Virology, vol.271, issue.2, pp.264-275, 2000.

R. S. Gomez, Respiratory syncytial virus detection in cells and clinical samples by using three new monoclonal antibodies, J Med Virol, vol.86, issue.7, pp.1256-1266, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02162185