R. A. Stone, M. T. Pardue, P. M. Iuvone, and T. S. Khurana, Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms, Experimental eye research, vol.114, p.3636148, 2013.

W. Meng, J. Butterworth, F. Malecaze, and P. Calvas, Axial length of myopia: a review of current research, Ophthalmologica Journal international d'ophtalmologie International journal of ophthalmology Zeitschrift fur Augenheilkunde, vol.225, issue.3, 2011.

R. R. Bourne, G. A. Stevens, R. A. White, J. L. Smith, S. R. Flaxman et al., Causes of vision loss worldwide, 1990-2010: a systematic analysis. The Lancet Global health, vol.1, p.25104599, 2013.

E. Dolgin, The myopia boom, Nature, vol.519, issue.7543, pp.276-284, 2015.

E. Tarutta, W. H. Chua, T. Young, E. Goldschmidt, S. M. Saw et al., Why Study the Mechanisms of Myopia? Novel Approaches to Risk Factors Signalling Eye Growth-How Could Basic Biology Be Translated into Clinical Insights? Where Are Genetic and Proteomic Approaches Leading? How Does Visual Function Contribute to and Interact with Ametropia? Does Eye Shape Matter? Why Ametropia at All? Optometry and vision science: official publication of the American Academy of Optometry, p.21297512, 2011.

I. G. Morgan, K. Ohno-matsui, and S. S. Myopia, Lancet, vol.379, issue.9827, p.22559900, 2012.

S. M. Saw, How blinding is pathological myopia? The British journal of ophthalmology, vol.90, p.1857043, 2006.

R. Wojciechowski, Nature and nurture: the complex genetics of myopia and refractive error, Clin Genet, vol.79, issue.4, p.21155761, 2011.

R. Wojciechowski and P. G. Hysi, Focusing in on the complex genetics of myopia, PLoS genetics, vol.9, issue.4, p.23593034, 2013.

R. Wojciechowski, N. Congdon, H. Bowie, B. Munoz, D. Gilbert et al., Heritability of refractive error and familial aggregation of myopia in an elderly American population. Investigative ophthalmology & visual science, vol.46, 2005.

D. M. Hornbeak and T. L. Young, Myopia genetics: a review of current research and emerging trends, Curr Opin Ophthalmol, vol.20, issue.5, p.19587595, 2009.

R. Wojciechowski, N. Congdon, H. Bowie, B. Munoz, D. Gilbert et al., Familial aggregation of hyperopia in an elderly population of siblings in Salisbury, Ophthalmology, vol.112, issue.1, p.15629824, 2005.

O. H. Sundin, G. S. Leppert, E. D. Silva, J. Yang, S. Dharmaraj et al., Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.27, p.15976030, 2005.

O. H. Sundin, S. Dharmaraj, I. A. Bhutto, T. Hasegawa, D. S. Mcleod et al., Developmental basis of nanophthalmos: MFRP Is required for both prenatal ocular growth and postnatal emmetropization

, PubMed PMID: Medline:18363166, vol.29, p.18363166, 2008.

P. G. Hysi, R. Wojciechowski, J. S. Rahi, and C. J. Hammond, Genome-wide association studies of refractive error and myopia, lessons learned, and implications for the future, Investigative ophthalmology & visual science, vol.55, issue.5, p.4039381, 2014.

V. J. Verhoeven, P. G. Hysi, R. Wojciechowski, Q. Fan, J. A. Guggenheim et al., Genome-wide metaanalyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia, Nature genetics, vol.45, issue.3, p.3740568, 2013.

J. T. Siegwart and T. T. Norton, Perspective: how might emmetropization and genetic factors produce myopia in normal eyes? Optometry and vision science: official publication of the American Academy of, Optometry, vol.88, issue.3, 2011.

J. Wallman and J. Winawer, Homeostasis of eye growth and the question of myopia, Neuron, vol.43, issue.4, p.15312645, 2004.

R. A. Stone and T. S. Khurana, Gene profiling in experimental models of eye growth: clues to myopia pathogenesis, Vision Res, vol.50, issue.23, p.20363242, 2010.

R. A. Stone, T. Lin, A. M. Laties, and P. M. Iuvone, Retinal dopamine and form-deprivation myopia, Proceedings of the National Academy of Sciences of the United States of America, vol.86, issue.2, p.286542, 1989.

J. Rymer and C. F. Wildsoet, The role of the retinal pigment epithelium in eye growth regulation and myopia: a review, PubMed PMID: Medline:16079001, vol.22, p.16079001, 2005.

M. T. Pardue, R. A. Stone, and P. M. Iuvone, Investigating mechanisms of myopia in mice, Experimental eye research, vol.114, p.3898884, 2013.

A. E. Faulkner, M. K. Kim, P. M. Iuvone, and M. T. Pardue, Head-mounted goggles for murine form deprivation myopia, J Neurosci Methods, vol.161, issue.1, p.17126909, 2007.

T. V. Tkatchenko, Y. Shen, and A. V. Tkatchenko, Mouse experimental myopia has features of primate myopia. Investigative ophthalmology & visual science, PubMed PMID, vol.51, issue.3, pp.1297-303, 2010.

P. Hn, Y. Qazi, C. Tan, S. B. Jabbar, Y. Cao et al., Assessment of axial length measurements in mouse eyes. Optometry and vision science: official publication of the American Academy of Optometry, vol.89, pp.296-303, 2012.

T. V. Tkatchenko, Y. Shen, and A. V. Tkatchenko, Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Investigative ophthalmology & visual science, vol.51, 2010.

F. Schaeffel, E. Burkhardt, H. C. Howland, and R. W. Williams, Measurement of refractive state and deprivation myopia in two strains of mice. Optometry and vision science: official publication of the American Academy of Optometry, vol.81, 2004.

A. V. Tkatchenko, T. V. Tkatchenko, J. A. Guggenheim, V. J. Verhoeven, P. G. Hysi et al., APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans, PLoS genetics, vol.11, issue.8, p.4551475, 2015.

O. Cases, A. Joseph, A. Obry, M. D. Santin, S. Ben-yacoub et al., Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia, PloS one, vol.10, issue.6, p.26107939, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231373

J. Wisard, A. Faulkner, M. A. Chrenek, T. Waxweiler, W. Waxweiler et al., Exaggerated eye growth in IRBP-deficient mice in early development, Investigative ophthalmology & visual science, vol.52, issue.8, 2011.

R. Schippert, E. Burkhardt, M. Feldkaemper, and F. Schaeffel, Relative axial myopia in Egr-1 (ZENK) knockout mice. Investigative ophthalmology & visual science, vol.48, p.17197510, 2007.

F. Huang, T. Yan, F. Shi, J. An, R. Xie et al., Activation of dopamine D2 receptor is critical for the development of form-deprivation myopia in the C57BL/6 mouse. Investigative ophthalmology & visual science, vol.55, p.25097246, 2014.

M. Tekin, B. A. Chioza, Y. Matsumoto, O. Diaz-horta, H. E. Cross et al., SLITRK6 mutations cause myopia and deafness in humans and mice, J Clin Invest, vol.123, issue.5, p.23543054, 2013.

R. Chakraborty, H. N. Park, A. M. Hanif, C. S. Sidhu, P. M. Iuvone et al., ON pathway mutations increase susceptibility to form-deprivation myopia, PubMed PMID: Medline:26072023, vol.137, p.26072023, 2015.

M. T. Pardue, A. E. Faulkner, A. Fernandes, H. Yin, F. Schaeffel et al., High susceptibility to experimental myopia in a mouse model with a retinal on pathway defect. Investigative ophthalmology & visual science, vol.49, 2008.

K. S. Nair, M. Hmani-aifa, A. Z. Kearney, A. L. , B. Salem et al., Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice, Nature genetics, vol.43, issue.6, p.21532570, 2011.

A. Gal, I. Rau, E. Matri, L. Kreienkamp, H. J. Fehr et al., Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. American journal of human genetics, vol.88, p.3059417, 2011.

A. Orr, M. P. Dube, J. C. Zenteno, H. Jiang, G. Asselin et al., Mutations in a novel serine protease PRSS56 in families with nanophthalmos. Molecular vision, vol.17, p.3137557, 2011.

D. Jiang, Z. Yang, S. Li, X. Xiao, X. Jia et al., Evaluation of PRSS56 in Chinese subjects with high hyperopia or primary angle-closure glaucoma, Molecular vision, vol.19, p.3820428, 2013.

A. K. Kiefer, J. Y. Tung, C. B. Do, D. A. Hinds, J. L. Mountain et al., Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia, PLoS genetics, vol.9, issue.2, p.3585144, 2013.

A. Jourdon, A. Gresset, N. Spassky, P. Charnay, P. Topilko et al., Prss56, a novel marker of adult neurogenesis in the mouse brain. Brain structure & function, vol.221, p.26701169, 2015.

T. Pak, S. Yoo, A. L. Miranda-angulo, A. M. Miranda-angulo, H. Wang et al., Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus, PloS one, vol.9, issue.4, p.24699247, 2014.

B. R. Nelson, Y. Ueki, S. Reardon, K. Mo, S. Georgi et al., Genome-wide analysis of Muller glial differentiation reveals a requirement for Notch signaling in postmitotic cells to maintain the glial fate, PloS one, vol.6, issue.8, p.3149061, 2011.

J. Wang, M. L. O'sullivan, D. Mukherjee, V. M. Punal, S. Farsiu et al., Anatomy and spatial organization of Muller glia in mouse retina, The Journal of comparative neurology, vol.525, issue.8, p.27997986, 2017.

S. L. Smith and J. T. Trachtenberg, Experience-dependent binocular competition in the visual cortex begins at eye opening, Nature neuroscience, vol.10, issue.3, pp.370-375, 2007.

A. J. Fischer, J. J. Mcguire, F. Schaeffel, and W. K. Stell, Light-and focus-dependent expression of the transcription factor ZENK in the chick retina, Nature neuroscience, vol.2, issue.8, pp.706-718, 1999.

R. S. Ashby, G. Zeng, A. J. Leotta, D. Y. Tse, and S. A. Mcfadden, Egr-1 mRNA expression is a marker for the direction of mammalian ocular growth. Investigative ophthalmology & visual science, vol.55, p.25052990, 2014.

F. Chen, P. Duggal, B. Klein, K. E. Lee, B. Truitt et al., Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent, Molecular vision, vol.22, p.27440996, 2016.

K. Roesch, A. P. Jadhav, J. M. Trimarchi, M. B. Stadler, B. Roska et al., The transcriptome of retinal Muller glial cells, The Journal of comparative neurology, vol.509, issue.2, p.2665263, 2008.

A. P. Jadhav, K. Roesch, and C. L. Cepko, Development and neurogenic potential of Muller glial cells in the vertebrate retina, Progress in retinal and eye research, vol.28, issue.4, p.3233204, 2009.

R. Soundararajan, J. Won, T. M. Stearns, J. R. Charette, W. L. Hicks et al., Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs, PloS one, vol.9, issue.10, p.4214712, 2014.

G. Uechi, Z. Sun, E. M. Schreiber, W. Halfter, and M. Balasubramani, Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules, 2014.

W. Halfter, U. Winzen, P. N. Bishop, and A. Eller, Regulation of eye size by the retinal basement membrane and vitreous body, Investigative ophthalmology & visual science, vol.47, issue.8, p.16877433, 2006.

A. O. Jo, D. A. Ryskamp, T. T. Phuong, A. S. Verkman, O. Yarishkin et al., TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Muller Glia, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.35, issue.39, p.4588615, 2015.

A. Bringmann, T. Pannicke, J. Grosche, M. Francke, P. Wiedemann et al., Muller cells in the healthy and diseased retina, Progress in retinal and eye research, vol.25, issue.4, p.16839797, 2006.

E. A. Nagelhus, M. L. Veruki, R. Torp, F. M. Haug, J. H. Laake et al., Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.18, issue.7, pp.2506-2525, 1998.

J. T. Siegwart and T. T. Norton, Response to interrupted hyperopia after restraint of axial elongation in tree shrews. Optometry and vision science: official publication of the American Academy of Optometry, vol.90, p.3703435, 2013.

S. L. Lee, L. C. Tourtellotte, R. L. Wesselschmidt, and J. Milbrandt, Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A, J Biol Chem, vol.270, issue.17, p.7730380, 1995.

L. Madisen, T. A. Zwingman, S. M. Sunkin, S. W. Oh, H. A. Zariwala et al., A robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nature neuroscience, vol.13, issue.1, p.2840225, 2010.

Y. Ruzankina, C. Pinzon-guzman, A. Asare, T. Ong, L. Pontano et al., Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss, Cell Stem Cell, vol.1, issue.1, p.2920603, 2007.

S. Hayashi, P. Lewis, L. Pevny, and A. P. Mcmahon, Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain, Mech Dev, vol.119, 2002.