K. Holde, , 1988.

G. Arents, R. W. Burlingame, B. Wang, W. E. Love, and E. N. Moudrianakis, The nucleosomal core histone octamer at 3.1 A resolution: A tripartite protein assembly and a left-handed superhelix, Proc Natl Acad Sci, vol.88, p.1946434, 1991.

G. Arents and E. N. Moudrianakis, Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA, Proc Natl Acad Sci U S A, vol.90, p.8248135, 1993.

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, vol.389, p.9305837, 1997.

F. Thoma, T. Koller, and A. Klug, Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin, J Cell Biol, vol.83, p.387806, 1979.

V. L. Makarov, S. I. Dimitrov, and P. T. Petrov, Salt-induced conformational transitions in chromatin. A flow linear dichroism study, Eur J Biochem, vol.133, p.6861740, 1983.

V. Stefanovsky, S. I. Dimitrov, V. R. Russanova, D. Angelov, and I. G. Pashev, Laser-induced crosslinking of histones to DNA in chromatin and core particles: implications in studying histone-DNA interactions, Nucleic Acids Res, vol.17, p.2602113, 1989.

A. E. De-la-barre, D. Angelov, A. Molla, and S. Dimitrov, The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation, EMBO J, vol.20, p.11707409, 2001.

L. Scrittori, F. Hans, D. Angelov, M. Charra, and C. Prigent, aurora-A kinase, histone H3 phosphorylation, and chromosome assembly in Xenopus egg extract, J Biol Chem, vol.276, p.11402032, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00966192

M. Beato and K. Eisfeld, Transcription factor access to chromatin, Nucleic Acids Res, vol.25, p.9278473, 1997.
DOI : 10.1093/nar/25.18.3559

URL : https://academic.oup.com/nar/article-pdf/25/18/3559/6282256/25-18-3559.pdf

D. Angelov, F. Lenouvel, F. Hans, C. W. Muller, and P. Bouvet, The histone octamer is invisible when NF-kappaB binds to the nucleosome, J Biol Chem, vol.279, p.15269206, 2004.

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.403, p.10638745, 2000.

D. Angelov, A. Verdel, W. An, V. Bondarenko, and F. Hans, SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays, EMBO J, vol.23, p.15372075, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00444420

C. M. Doyen, W. An, D. Angelov, V. Bondarenko, and F. Mietton, Mechanism of polymerase II transcription repression by the histone variant macroH2A, Mol Cell Biol, vol.26, p.16428466, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00091626

C. R. Clapier and B. R. Cairns, The biology of chromatin remodeling complexes, Annu Rev Biochem, vol.78, pp.273-304, 2009.

P. B. Becker and W. Horz, ATP-dependent nucleosome remodeling, Annu Rev Biochem, vol.71, p.12045097, 2002.
DOI : 10.1146/annurev.biochem.71.110601.135400

C. L. Peterson and J. W. Tamkun, The SWI-SNF complex: a chromatin remodeling machine?, Trends Biochem Sci, vol.20, p.7770913, 1995.

G. Langst and P. B. Becker, Nucleosome mobilization and positioning by ISWI-containing chromatinremodeling factors, J Cell Science, vol.114, p.11683384, 2001.

K. Havas, I. Whitehouse, and T. Owen-hughes, ATP-dependent chromatin remodeling activities, Cell Mol Life Sci, vol.58, p.11437229, 2001.
DOI : 10.1007/pl00000891

Y. Bao and X. Shen, SnapShot: chromatin remodeling complexes, Cell, vol.129, p.17482554, 2007.
DOI : 10.1016/j.cell.2007.04.018

URL : https://doi.org/10.1016/j.cell.2007.04.018

V. K. Gangaraju and B. Bartholomew, Mechanisms of ATP dependent chromatin remodeling, Mutat Res, vol.618, p.17306844, 2007.

B. R. Cairns, Y. Lorch, Y. Li, M. Zhang, and L. Lacomis, RSC, an essential, abundant chromatinremodeling complex, Cell, vol.87, p.8980231, 1996.
DOI : 10.1016/s0092-8674(00)81820-6

URL : https://doi.org/10.1016/s0092-8674(00)81820-6

Y. Chaban, C. Ezeokonkwo, W. H. Chung, F. Zhang, and R. D. Kornberg, Structure of a RSC-nucleosome complex and insights into chromatin remodeling, Nat Struct Mol Biol, vol.15, pp.1272-1277, 2008.

M. S. Shukla, S. H. Syed, F. Montel, C. Faivre-moskalenko, and J. Bednar, Remosomes: RSC generated non-mobilized particles with approximately 180 bp DNA loosely associated with the histone octamer, Proc Natl Acad Sci U S A, vol.107, pp.1936-1941, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00817658

B. C. Beard, S. H. Wilson, and M. J. Smerdon, Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes, Proc Natl Acad Sci U S A, vol.100, p.12799467, 2003.

B. C. Beard, J. J. Stevenson, S. H. Wilson, and M. J. Smerdon, Base excision repair in nucleosomes lacking histone tails, DNA Repair (Amst), vol.4, pp.203-209, 2005.

I. Jagannathan, H. A. Cole, and J. J. Hayes, Base excision repair in nucleosome substrates, Chromosome Res, vol.14, p.16506094, 2006.

H. Nilsen, T. Lindahl, and A. Verreault, DNA base excision repair of uracil residues in reconstituted nucleosome core particles, EMBO J, vol.21, p.12411511, 2002.

I. D. Odell, K. Newick, N. H. Heintz, S. S. Wallace, and D. S. Pederson, Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1, DNA Repair (Amst), vol.9, pp.134-143, 2010.

H. A. Cole, J. M. Tabor-godwin, and J. J. Hayes, Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets, J Biol Chem, vol.285, pp.2876-2885, 2010.

H. Menoni, D. Gasparutto, A. Hamiche, J. Cadet, and S. Dimitrov, ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes, Mol Cell Biol, vol.27, p.17591702, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00170196

H. Menoni, M. S. Shukla, V. Gerson, S. Dimitrov, and D. Angelov, Base excision repair of 8-oxoG in dinucleosomes, Nucleic acids research, vol.40, pp.692-700, 2012.
URL : https://hal.archives-ouvertes.fr/ensl-00807713

G. Orphanides, W. H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg, The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins, Nature, vol.400, p.10421373, 1999.

R. Belotserkovskaya, S. Oh, V. A. Bondarenko, G. Orphanides, and V. M. Studitsky, FACT facilitates transcription-dependent nucleosome alteration, Science, vol.301, p.12934006, 2003.

D. M. Keller and H. Lu, p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex, J Biol Chem, vol.277, p.12393879, 2002.

D. M. Keller, X. Zeng, Y. Wang, Q. H. Zhang, and M. Kapoor, A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1, Mol Cell, vol.7, p.11239457, 2001.

K. Heo, H. Kim, S. H. Choi, J. Choi, and K. Kim, FACT-mediated exchange of histone variant H2AX regulated by phosphorylation of H2AX and ADP-ribosylation of Spt16, Mol Cell, vol.30, pp.86-97, 2008.

C. Dinant, G. Ampatziadis-michailidis, H. Lans, M. Tresini, and A. Lagarou, Enhanced chromatin dynamics by FACT promotes transcriptional restart after UV-induced DNA damage, Mol Cell, vol.51, p.23973375, 2013.

H. Menoni, J. H. Hoeijmakers, and W. Vermeulen, Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo, J Cell Biol, vol.199, pp.1037-1046, 2012.

B. Epe, DNA damage spectra induced by photosensitization, Photochemical & Photobiological Sciences, vol.11, pp.98-106, 2012.

J. Ravanat, D. Mascio, P. Martinez, G. R. Medeiros, M. H. Cadet et al., Singlet oxygen induces oxidation of cellular DNA, J Biol Chem, vol.275, p.11007783, 2000.

J. H. Park, E. J. Park, H. S. Lee, S. J. Kim, and S. K. Hur, Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction, EMBO J, vol.25, p.16932743, 2006.

J. M. Hinz, Y. Rodriguez, and M. J. Smerdon, Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme, Proc Natl Acad Sci U S A, vol.107, pp.4646-4651, 2010.

D. Angelov, V. A. Bondarenko, S. Almagro, H. Menoni, and F. Mongelard, Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes, EMBO J, vol.25, p.16601700, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00091623

M. Pasi and R. Lavery, Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics, Nucleic Acids Res, vol.41, pp.5450-5456, 2016.

Y. Lorch, B. R. Cairns, M. Zhang, and R. D. Kornberg, Activated RSC-nucleosome complex and persistently altered form of the nucleosome, Cell, vol.94, p.9674424, 1998.

G. Schnitzler, S. Sif, and R. E. Kingston, Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state, Cell, vol.94, p.9674423, 1998.

C. R. Clapier, M. M. Kasten, T. J. Parnell, R. Viswanathan, and H. Szerlong, Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection, Mol Cell, vol.62, pp.453-461, 2016.

S. R. Kassabov, B. Zhang, J. Persinger, and B. Bartholomew, SWI/SNF unwraps, slides, and rewraps the nucleosome, Mol Cell, vol.11, p.12620227, 2003.

C. Wu and A. Travers, A 'one-pot' assay for the accessibility of DNA in a nucleosome core particle, Nucleic Acids Res, vol.32, 2004.

R. Pavri, B. Zhu, G. Li, P. Trojer, and S. Mandal, Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II, Cell, vol.125, p.16713563, 2006.

F. K. Hsieh, O. I. Kulaeva, S. S. Patel, P. N. Dyer, and K. Luger, Histone chaperone FACT action during transcription through chromatin by RNA polymerase II, Proc Natl Acad Sci U S A, vol.110, pp.7654-7659, 2013.

H. Xin, S. Takahata, M. Blanksma, L. Mccullough, and D. J. Stillman, yFACT induces global accessibility of nucleosomal DNA without H2A-H2B displacement, Mol Cell, vol.35, pp.365-376, 2009.

M. S. Shukla, S. H. Syed, D. Goutte-gattat, J. L. Richard, and F. Montel, The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling, Nucleic Acids Res, vol.39, pp.2559-2570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00726345

C. M. Doyen, F. Montel, T. Gautier, H. Menoni, and C. Claudet, Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome, EMBO J, vol.25, p.16957777, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00335077

M. Hondele, T. Stuwe, M. Hassler, F. Halbach, and A. Bowman, Structural basis of histone H2A-H2B recognition by the essential chaperone FACT, Nature, vol.499, pp.111-114, 2013.

X. Yang, R. Zaurin, M. Beato, and C. L. Peterson, Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement, Nat Struct Mol Biol, vol.14, p.17496903, 2007.

B. Lapeyre, H. Bourbon, and F. Amalric, Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence, Proc Natl Acad Sci U S A, vol.84, p.3470736, 1987.

T. Bonaldi, G. Langst, R. Strohner, P. B. Becker, and M. E. Bianchi, The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding, EMBO J, vol.21, p.12486007, 2002.

D. R. Foltz, L. E. Jansen, B. E. Black, A. O. Bailey, and . Yates-jr-3rd, The human CENP-A centromeric nucleosome-associated complex, Nat Cell Biol, vol.8, p.16622419, 2006.

M. Perpelescu and T. Fukagawa, The ABCs of CENPs, Chromosoma, 2011.

M. Perpelescu, N. Nozaki, C. Obuse, H. Yang, and K. Yoda, Active establishment of centromeric CENP-A chromatin by RSF complex, The Journal of cell biology, vol.185, pp.397-407, 2009.

M. Okada, K. Okawa, T. Isobe, and T. Fukagawa, CENP-H-containing complex facilitates centromere deposition of CENP-A in cooperation with FACT and CHD1, Mol Biol Cell, vol.20, pp.3986-3995, 2009.

K. Ouararhni, R. Hadj-slimane, A. , S. , R. P. Mietton et al., The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity, Genes Dev, vol.20, p.17158748, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00105117

K. Luger, T. J. Rechsteiner, and T. J. Richmond, Expression and purification of recombinant histones and nucleosome reconstitution, Methods Mol Biol, vol.119, p.10804500, 1999.

J. D. Dignam, Preparation of extracts from higher eukaryotes, Methods Enzymol, vol.182, p.2314237, 1990.

P. S. Bradshaw, D. J. Stavropoulos, and M. S. Meyn, Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage, Nat Genet, vol.37, p.15665826, 2005.