P. Acs, M. Kipp, A. Norkute, S. Johann, T. Clarner et al., 17Beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice, Glia, vol.57, pp.807-814, 2009.

R. P. Allred, D. L. Adkins, M. T. Woodlee, L. C. Husbands, M. A. Maldonado et al., The vermicelli handling test: a simple quantitative measure of dexterous forepaw function in rats, J. Neurosci. Methods, vol.170, pp.229-244, 2008.

M. Aouad, N. Petit-demoulière, Y. Goumon, and P. Poisbeau, Etifoxine stimulates allopregnanolone synthesis in the spinal cord to produce analgesia in experimental mononeuropathy, Eur. J. Pain, vol.18, pp.258-268, 2013.

D. N. Arvanitis, H. Wang, R. D. Bagshaw, J. W. Callahan, and J. M. Boggs, Membraneassociated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes, J. Neurosci. Res, vol.75, pp.603-613, 2004.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, A sensitive and reliable locomotor rating scale for open field testing in rats, J. Neurotrauma, vol.12, pp.1-21, 1995.

D. M. Basso, L. C. Fisher, A. J. Anderson, L. B. Jakeman, D. M. Mctigue et al., Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains, J. Neurotrauma, vol.23, pp.635-659, 2006.

D. M. Basso, Behavioral testing after spinal cord injury: congruities, complexities, and controversies, J. Neurotrauma, vol.21, pp.395-404, 2004.

W. A. Bauman, C. M. Cirnigliaro, M. F. La-fountaine, A. M. Jensen, J. M. Wecht et al., A small-scale clinical trial to determine the safety and efficacy of testosterone replacement therapy in hypogonadal men with spinal cord injury, Horm. Metab. Res, vol.43, pp.574-579, 2011.

W. A. Bauman, M. F. Fountaine, and A. M. Spungen, Age-related prevalence of low testosterone in men with spinal cord injury, J. Spinal Cord Med, vol.37, pp.32-39, 2014.

C. Borras, J. Gambini, and J. Vina, Mitochondrial oxidant generation is involved in determining why females live longer than males, Front. Biosci, vol.12, pp.1008-1013, 2007.

V. Bracchi-ricard, K. L. Lambertsen, J. Ricard, L. Nathanson, S. Karmally et al., Inhibition of astroglial NF-kappaB enhances oligodendrogenesis following spinal cord injury, J. Neuroinflammation, vol.10, p.92, 2013.

R. Brambilla, V. Bracchi-ricard, W. H. Hu, B. Frydel, A. Bramwell et al., Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury, J. Exp. Med, vol.202, pp.145-156, 2005.

J. C. Bresnahan, M. S. Beattie, I. Todd, F. D. Noyes, and D. H. , A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device, Exp. Neurol, vol.95, pp.548-570, 1987.

C. M. Brown, S. Suzuki, K. A. Jelks, and P. M. Wise, Estradiol is a potent protective, restorative, and trophic factor after brain injury, Semin. Reprod. Med, vol.27, pp.240-249, 2009.

R. L. Brunsing, K. S. Owens, and E. R. Prossnitz, The G protein-coupled estrogen receptor (GPER) agonist G-1 expands the regulatory T-cell population under TH17-polarizing conditions, J. Immunother, vol.36, pp.190-196, 2013.

J. S. Byers, A. L. Huguenard, D. Kuruppu, N. K. Liu, X. M. Xu et al., Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury, J. Comp. Neurol, vol.520, pp.2683-2696, 2012.

V. M. Carroll, M. Jeyakumar, K. E. Carlson, and J. A. Katzenellenbogen, Diarylpropionitrile (DPN) enantiomers: synthesis and evaluation of estrogen receptor beta-selective ligands, J. Med. Chem, vol.55, pp.528-537, 2012.

A. Caruso, D. Giorgi, V. Gerevini, M. Castiglione, F. Marinelli et al., Testosterone amplifies excitotoxic damage of cultured oligodendrocytes, J. Neurochem, vol.88, pp.1179-1185, 2004.

B. Celik, A. Sahin, N. Caglar, B. Erhan, B. Gunduz et al., Sex hormone levels and functional outcomes: a controlled study of patients with spinal cord injury compared with healthy subjects, Am. J. Phys. Med. Rehabil, vol.86, pp.784-790, 2007.

P. Chaovipoch, K. A. Jelks, L. M. Gerhold, E. J. West, S. Chongthammakun et al., 17Beta-estradiol is protective in spinal cord injury in post-and pre-menopausal rats, J. Neurotrauma, vol.23, pp.830-852, 2006.

M. M. Cherrier, A. M. Matsumoto, J. K. Amory, S. Ahmed, W. Bremner et al., The role of aromatization in testosterone supplementation: effects on cognition in older men, Neurology, vol.64, pp.290-296, 2005.

M. J. Clark, L. H. Schopp, M. O. Mazurek, I. Zaniletti, A. B. Lammy et al., Testosterone levels among men with spinal cord injury: relationship between time since injury and laboratory values, Am. J. Phys. Med. Rehabil, vol.87, pp.758-767, 2008.

M. J. Clark, G. F. Petroski, M. O. Mazurek, K. J. Hagglund, A. K. Sherman et al., Testosterone replacement therapy and motor function in men with spinal cord injury: a retrospective analysis, Am. J. Phys. Med. Rehabil, vol.87, pp.281-284, 2008.

M. F. Coronel, F. Labombarda, M. J. Villar, A. F. De-nicola, and S. L. Gonzalez, Progesterone prevents allodynia after experimental spinal cord injury, J. Pain, vol.12, pp.71-83, 2011.

I. Curry, J. J. Heim, and L. M. , Brain myelination after neonatal administration of oestradiol, Nature, vol.209, pp.915-916, 1966.

S. Cuzzocrea, T. Genovese, E. Mazzon, E. Esposito, R. Di-paola et al., Effect of 17beta-estradiol on signal transduction pathways and secondary damage in experimental spinal cord trauma, Shock, vol.29, pp.362-371, 2008.

A. F. De-nicola, M. C. Gonzalez-deniselle, L. Garay, M. Meyer, G. Gargiulo-monachelli et al., Progesterone protective effects in neurodegeneration and neuroinflammation, J. Neuroendocrinol, 2013.

A. F. De-nicola, F. Coronel, L. I. Garay, G. Gargiulo-monachelli, M. C. Deniselle et al., Therapeutic effects of progesterone in animal models of neurological disorders, CNS Neurol Disord Drug Targets, vol.12, pp.1205-1218, 2013.

E. Deliu, G. C. Brailoiu, J. B. Arterburn, T. I. Oprea, K. Benamar et al., Mechanisms of G protein-coupled estrogen receptor-mediated spinal nociception, J. Pain, vol.13, pp.742-754, 2012.

M. K. Dennis, A. S. Field, R. Burai, C. Ramesh, W. K. Petrie et al., Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity, J. Steroid Biochem. Mol. Biol, vol.127, pp.358-366, 2011.

E. R. Deutsch, T. R. Espinoza, F. Atif, E. Woodall, J. Kaylor et al., Progesterone's role in neuroprotection, a review of the evidence, Brain Res, vol.1530, pp.82-105, 2013.

M. J. Devivo, Epidemiology of traumatic spinal cord injury: trends and future implications, Spinal Cord, vol.50, pp.365-372, 2012.

S. L. Dun, G. C. Brailoiu, X. Gao, E. Brailoiu, J. B. Arterburn et al., Expression of estrogen receptor GPR30 in the rat spinal cord and in autonomic and sensory ganglia, J. Neurosci. Res, vol.87, pp.1610-1619, 2009.

A. Durga, F. Sepahpanah, M. Regozzi, J. Hastings, and D. A. Crane, Prevalence of testosterone deficiency after spinal cord injury, PM & R, vol.3, pp.929-932, 2011.

K. N. Fargo and D. R. Sengelaub, Exogenous testosterone prevents motoneuron atrophy induced by contralateral motoneuron depletion, J. Neurobiol, vol.60, pp.348-359, 2004.

K. N. Fargo and D. R. Sengelaub, Testosterone manipulation protects motoneurons from dendritic atrophy after contralateral motoneuron depletion, J. Comp. Neurol, vol.469, pp.96-106, 2004.

A. Faroni and V. Magnaghi, The neurosteroid allopregnanolone modulates specific functions in central and peripheral glial cells, Front. Endocrinol, p.103, 2011.

M. Farooque, Z. Suo, P. M. Arnold, M. J. Wulser, C. T. Chou et al., Gender-related differences in recovery of locomotor function after spinal cord injury in mice, Spinal Cord, vol.44, pp.182-187, 2006.

D. B. Fee, K. R. Swartz, K. M. Joy, K. N. Roberts, N. N. Scheff et al., Effects of progesterone on experimental spinal cord injury, Brain Res, vol.1137, pp.146-152, 2007.

M. G. Fehlings and C. H. Tator, The relationships among the severity of spinal cord injury, residual neurological function, axon counts, and counts of retrogradely labeled neurons after experimental spinal cord injury, Exp. Neurol, vol.132, pp.220-228, 1995.

J. C. Furlan, A. V. Krassioukov, and M. G. Fehlings, The effects of gender on clinical and neurological outcomes after acute cervical spinal cord injury, J. Neurotrauma, vol.22, pp.368-381, 2005.

K. Gale, H. Kerasidis, and J. R. Wrathall, Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment, Exp. Neurol, vol.88, pp.123-134, 1985.

J. Garcia-estrada, J. A. Del-rio, S. Luquin, E. Soriano, and L. M. Garcia-segura, Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury, Brain Res, vol.628, pp.271-278, 1993.

L. Garay, M. C. Deniselle, M. Meyer, J. J. Costa, A. Lima et al., Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis, Brain Res, vol.1283, pp.177-185, 2009.

L. I. Garay, M. C. Gonzalez-deniselle, M. E. Brocca, A. Lima, P. Roig et al., Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis, Neuroscience, vol.226, pp.40-50, 2012.

J. W. Gatson and M. Singh, Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes, Endocrinology, vol.148, pp.2458-2464, 2007.

S. Ghisletti, C. Meda, A. Maggi, and E. Vegeto, 17Beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization, Mol. Cell. Biol, vol.25, pp.2957-2968, 2005.

S. N. Giraud, C. M. Caron, D. Pham-dinh, P. Kitabgi, and A. B. Nicot, Estradiol inhibits ongoing autoimmune neuroinflammation and NFkappaB-dependent CCL2 expression in reactive astrocytes, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.8416-8421, 2010.

S. L. Gonzalez, F. Labombarda, M. C. Deniselle, A. Mougel, R. Guennoun et al., Progesterone neuroprotection in spinal cord trauma involves upregulation of brain-derived neurotrophic factor in motoneurons, J. Steroid Biochem. Mol. Biol, vol.94, pp.143-149, 2005.

S. L. Gonzalez, J. J. Lopez-costa, F. Labombarda, M. C. Deniselle, R. Guennoun et al., Progesterone effects on neuronal ultrastructure and expression of microtubule-associated protein 2 (MAP2) in rats with acute spinal cord injury, Cell. Mol. Neurobiol, vol.29, pp.27-39, 2009.

T. W. Gould, M. J. Burek, R. Ishihara, A. C. Lo, D. Prevette et al., Androgens rescue avian embryonic lumbar spinal motoneurons from injury-induced but not naturally occurring cell death, J. Neurobiol, vol.41, pp.585-595, 1999.

B. D. Greenwald, R. T. Seel, D. X. Cifu, and A. N. Shah, Gender-related differences in acute rehabilitation lengths of stay, charges, and functional outcomes for a matched sample with spinal cord injury: a multicenter investigation, Arch. Phys. Med. Rehabil, vol.82, pp.1181-1187, 2001.

J. A. Gruner, A monitored contusion model of spinal cord injury in the rat, J. Neurotrauma, vol.9, pp.123-126, 1992.

F. P. Hamers, G. C. Koopmans, and E. A. Joosten, CatWalk-assisted gait analysis in the assessment of spinal cord injury, J. Neurotrauma, vol.23, pp.537-548, 2006.

E. Hauben, T. Mizrahi, E. Agranov, and M. Schwartz, Sexual dimorphism in the spontaneous recovery from spinal cord injury: a gender gap in beneficial autoimmunity?, Eur. J. Neurosci, vol.16, pp.1731-1740, 2002.

P. S. Herson, I. P. Koerner, and P. D. Hurn, Sex, sex steroids, and brain injury, Semin. Reprod. Med, vol.27, pp.229-239, 2009.

Y. Hirahara, K. I. Matsuda, H. Yamada, A. Saitou, S. Morisaki et al., G protein-coupled receptor 30 contributes to improved remyelination after cuprizoneinduced demyelination, Glia, vol.61, pp.420-431, 2013.

R. Hu, H. Sun, Q. Zhang, J. Chen, N. Wu et al., G-protein coupled estrogen receptor 1 mediated estrogenic neuroprotection against spinal cord injury, Crit. Care Med, vol.40, pp.3230-3237, 2012.

C. H. Hubscher, J. D. Fell, and D. S. Gupta, Sex and hormonal variations in the development of at-level allodynia in a rat chronic spinal cord injury model, Neurosci. Lett, vol.477, pp.153-156, 2010.

R. Hussain, A. M. Ghoumari, B. Bielecki, J. Steibel, N. Boehm et al., The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination, Brain, vol.136, pp.132-146, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542826

P. E. Juif, J. D. Breton, M. Rajalu, A. Charlet, Y. Goumon et al., Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABAA receptor-mediated synaptic inhibition, J. Neurosci, vol.33, pp.16617-16626, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02166032

I. Jung-testas, M. Renoir, H. Bugnard, G. L. Greene, and E. E. Baulieu, Demonstration of steroid hormone receptors and steroid action in primary cultures of rat glial cells, J. Steroid Biochem. Mol. Biol, vol.41, pp.621-631, 1992.

S. Kachadroka, A. M. Hall, T. L. Niedzielko, S. Chongthammakun, and C. L. Floyd, Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats, J. Neurotrauma, vol.27, pp.611-626, 2010.

A. J. Khalaj, J. Yoon, J. Nakai, Z. Winchester, S. M. Moore et al., Estrogen receptor (ER) beta expression in oligodendrocytes is required for attenuation of clinical disease by an ERbeta ligand, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.19125-19130, 2013.

J. Kjell, K. Sandor, A. Josephson, C. I. Svensson, and M. B. Abrams, Rat substrains differ in the magnitude of spontaneous locomotor recovery and in the development of mechanical hypersensitivity after experimental spinal cord injury, J. Neurotrauma, vol.30, pp.1805-1811, 2013.

J. Kuhn, O. A. Dina, C. Goswami, V. Suckow, J. D. Levine et al., GPR30 estrogen receptor agonists induce mechanical hyperalgesia in the rat, Eur. J. Neurosci, vol.27, pp.1700-1709, 2008.

B. K. Kwon, J. Hillyer, and W. Tetzlaff, Translational research in spinal cord injury: a survey of opinion from the SCI community, J. Neurotrauma, vol.27, pp.21-33, 2010.

B. K. Kwon, E. Okon, J. Hillyer, C. Mann, D. Baptiste et al., A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury, J. Neurotrauma, vol.28, pp.1545-1588, 2011.

B. K. Kwon, A. Ghag, L. Reichl, M. F. Dvorak, J. Illes et al., Opinions on the preclinical evaluation of novel therapies for spinal cord injury: a comparison between researchers and spinal cord-injured individuals, J. Neurotrauma, vol.29, pp.2367-2374, 2012.

F. Labombarda, S. L. Gonzalez, D. M. Gonzalez, R. Guennoun, M. Schumacher et al., Cellular basis for progesterone neuroprotection in the injured spinal cord, J. Neurotrauma, vol.19, pp.343-355, 2002.

F. Labombarda, S. L. Gonzalez, M. C. Deniselle, G. P. Vinson, M. Schumacher et al., Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord, J. Neurochem, vol.87, pp.902-913, 2003.

F. Labombarda, S. Gonzalez, M. C. Gonzalez-deniselle, L. Garay, R. Guennoun et al., Progesterone increases the expression of myelin basic protein and the number of cells showing NG2 immunostaining in the lesioned spinal cord, J. Neurotrauma, vol.23, pp.181-192, 2006.

F. Labombarda, S. L. Gonzalez, A. Lima, P. Roig, R. Guennoun et al., Effects of progesterone on oligodendrocyte progenitors, oligodendrocyte transcription factors, and myelin proteins following spinal cord injury, Glia, vol.57, pp.884-897, 2009.

F. Labombarda, D. Meffre, B. Delespierre, S. Krivokapic-blondiaux, A. Chastre et al., Membrane progesterone receptors localization in the mouse spinal cord, Neuroscience, vol.166, pp.94-106, 2010.

F. Labombarda, S. Gonzalez, A. Lima, P. Roig, R. Guennoun et al., Progesterone attenuates astro-and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury, Exp. Neurol, vol.231, pp.135-146, 2011.

J. Y. Lee, S. Y. Choi, T. H. Oh, and T. Y. Yune, 2012. 17Beta-estradiol inhibits apoptotic cell death of oligodendrocytes by inhibiting RhoA-JNK3 activation after spinal cord injury, Endocrinology, vol.153, pp.3815-3827
URL : https://hal.archives-ouvertes.fr/hal-02089563

B. Lorenz, L. M. Garcia-segura, and L. L. Doncarlos, Cellular phenotype of androgen receptor-immunoreactive nuclei in the developing and adult rat brain, J. Comp. Neurol, vol.492, pp.456-468, 2005.

S. Lumbroso, F. Sandillon, V. Georget, J. M. Lobaccaro, A. O. Brinkmann et al., Immunohistochemical localization and immunoblotting of androgen receptor in spinal neurons of male and female rats, Eur. J. Endocrinol, vol.134, pp.626-632, 1996.

P. Mannella and R. D. Brinton, Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action, J. Neurosci, vol.26, pp.9439-9447, 2006.

M. Marin-husstege, M. Muggironi, D. Raban, R. P. Skoff, and P. Casaccia-bonnefil, Oligodendrocyte progenitor proliferation and maturation is differentially regulated by male and female sex steroid hormones, Dev. Neurosci, vol.26, pp.245-254, 2004.

M. Martinez, J. M. Brezun, L. Bonnier, and C. Xerri, A new rating scale for openfield evaluation of behavioral recovery after cervical spinal cord injury in rats, J. Neurotrauma, vol.26, pp.1043-1053, 2009.

C. D. Mills, B. C. Hains, K. M. Johnson, and C. E. Hulsebosch, Strain and model differences in behavioral outcomes after spinal cord injury in rat, J. Neurotrauma, vol.18, pp.743-756, 2001.

G. D. Muir, A. A. Webb, S. Kanagal, and L. Taylor, Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats, Eur. J. Neurosci, vol.25, pp.1501-1510, 2007.

A. Nicot, Gender and sex hormones in multiple sclerosis pathology and therapy, Front. Biosci. (Landmark Ed), vol.14, pp.4477-4515, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00370417

J. Nilsen and R. D. Brinton, Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate, Endocrinology, vol.143, pp.205-212, 2002.

J. Nilsen and R. D. Brinton, Divergent impact of progesterone and medroxyprogesterone acetate (Provera) on nuclear mitogen-activated protein kinase signaling, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.10506-10511, 2003.

S. Nilsson and J. A. Gustafsson, Biological role of estrogen and estrogen receptors, Crit. Rev. Biochem. Mol. Biol, vol.37, pp.1-28, 2002.

D. H. Noyes, Electromechanical impactor for producing experimental spinal cord injury in animals, Med. Biol. Eng. Comput, vol.25, pp.335-340, 1987.

B. F. O'dowd, T. Nguyen, A. Marchese, R. Cheng, K. R. Lynch et al., Discovery of three novel G-protein-coupled receptor genes, Genomics, vol.47, pp.310-313, 1998.

T. Ogata, Y. Nakamura, K. Tsuji, T. Shibata, and K. Kataoka, Steroid hormones protect spinal cord neurons from glutamate toxicity, Neuroscience, vol.55, pp.445-449, 1993.

S. M. Onifer, A. G. Rabchevsky, and S. W. Scheff, Rat models of traumatic spinal cord injury to assess motor recovery, ILAR J, vol.48, pp.385-395, 2007.

C. Owman, C. Nilsson, and S. J. Lolait, Cloning of cDNA encoding a putative chemoattractant receptor, Genomics, vol.37, pp.187-194, 1996.

M. G. Oyola, W. Portillo, A. Reyna, C. D. Foradori, A. Kudwa et al., Anxiolytic effects and neuroanatomical targets of estrogen receptor-beta (ERbeta) activation by a selective ERbeta agonist in female mice, Endocrinology, vol.153, pp.837-846, 2012.

T. R. Pak, W. C. Chung, T. D. Lund, L. R. Hinds, C. M. Clay et al., The androgen metabolite, 5alpha-androstane-3beta, 17beta-diol, is a potent modulator of estrogen receptor-beta1-mediated gene transcription in neuronal cells, Endocrinology, vol.146, pp.147-155, 2005.

R. E. Papka, M. Storey-workley, P. J. Shughrue, I. Merchenthaler, J. J. Collins et al., Estrogen receptor-alpha and beta-immunoreactivity and mRNA in neurons of sensory and autonomic ganglia and spinal cord, Cell Tissue Res, vol.304, pp.193-214, 2001.

C. Patte-mensah, L. Meyer, O. Taleb, and A. G. Mensah-nyagan, Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain, Prog. Neurobiol, vol.113, pp.70-78, 2014.

J. R. Plemel, G. Duncan, K. W. Chen, C. Shannon, S. Park et al., A graded forceps crush spinal cord injury model in mice, J. Neurotrauma, vol.25, pp.350-370, 2008.

M. E. Pollard and D. F. Apple, Factors associated with improved neurologic outcomes in patients with incomplete tetraplegia, Spine, vol.28, pp.33-39, 2003.

P. G. Popovich, P. Wei, and B. T. Stokes, Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats, J. Comp. Neurol, vol.377, pp.443-464, 1997.

E. R. Prossnitz and M. Barton, The G-protein-coupled estrogen receptor GPER in health and disease, Nat. Rev. Endocrinol, vol.7, pp.715-726, 2011.

A. G. Rabchevsky, P. G. Sullivan, I. Fugaccia, and S. W. Scheff, Creatine diet supplement for spinal cord injury: influences on functional recovery and tissue sparing in rats, J. Neurotrauma, vol.20, pp.659-669, 2003.

M. Razandi, A. Pedram, G. L. Greene, and E. R. Levin, Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells, Mol. Endocrinol, vol.13, pp.307-319, 1999.

J. A. Rettew, S. H. Mccall-4th, and I. Marriott, GPR30/GPER-1 mediates rapid decreases in TLR4 expression on murine macrophages, Mol. Cell. Endocrinol, vol.328, pp.87-92, 2010.

C. M. Revankar, D. F. Cimino, L. A. Sklar, J. B. Arterburn, and E. R. Prossnitz, A transmembrane intracellular estrogen receptor mediates rapid cell signaling, Science, vol.307, pp.1625-1630, 2005.

M. F. Ritz and O. N. Hausmann, Effect of 17beta-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats, Brain Res, vol.1203, pp.177-188, 2008.

A. S. Rivlin and C. H. Tator, Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat, Surg. Neurol, vol.10, pp.38-43, 1978.

E. S. Rosenzweig and J. W. Mcdonald, Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair, Curr. Opin. Neurol, vol.17, pp.121-131, 2004.

B. Sahin, B. S. Albayrak, O. Ismailoglu, and A. Gorgulu, The effects of medroxy progesterone acetate on the pro-inflammatory cytokines, TNF-alpha and IL-1beta in the early phase of the spinal cord injury, Neurol. Res, vol.33, pp.63-67, 2011.

S. Samantaray, J. A. Smith, A. Das, D. D. Matzelle, A. K. Varma et al., Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay, Neurochem. Res, vol.36, pp.1809-1816, 2011.

S. W. Scheff, A. G. Rabchevsky, I. Fugaccia, J. A. Main, and J. E. Lumpp, Experimental modeling of spinal cord injury: characterization of a force-defined injury device, J. Neurotrauma, vol.20, pp.179-193, 2003.

C. Schmitt, G. S. Miranpuri, V. K. Dhodda, J. Isaacson, R. Vemuganti et al., Changes in spinal cord injury-induced gene expression in rat are strain-dependent, Spine J, vol.6, pp.113-119, 2006.

M. Schumacher, R. Guennoun, A. Ghoumari, C. Massaad, F. Robert et al., Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system, Endocr. Rev, vol.28, pp.387-439, 2007.

P. J. Shughrue, M. V. Lane, and I. Merchenthaler, Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system, J. Comp. Neurol, vol.388, pp.507-525, 1997.

R. B. Simerly, C. Chang, M. Muramatsu, and L. W. Swanson, Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study, J. Comp. Neurol, vol.294, pp.76-95, 1990.

M. L. Sipski, A. B. Jackson, O. Gomez-marin, I. Estores, and A. Stein, Effects of gender on neurologic and functional recovery after spinal cord injury, Arch. Phys. Med. Rehabil, vol.85, pp.1826-1836, 2004.

A. Siriphorn, K. A. Dunham, S. Chompoopong, and C. L. Floyd, Postinjury administration of 17beta-estradiol induces protection in the gray and white matter with associated functional recovery after cervical spinal cord injury in male rats, J. Comp. Neurol, vol.520, pp.2630-2646, 2012.

J. S. Soblosky, J. H. Song, and D. H. Dinh, Graded unilateral cervical spinal cord injury in the rat: evaluation of forelimb recovery and histological effects, Behav. Brain Res, vol.119, pp.1-13, 2001.

E. A. Sribnick, J. M. Wingrave, D. D. Matzelle, G. G. Wilford, S. K. Ray et al., Estrogen attenuated markers of inflammation and decreased lesionvolume in acute spinal cord injury in rats, J. Neurosci. Res, vol.82, pp.283-293, 2005.

E. A. Sribnick, D. D. Matzelle, S. K. Ray, and N. L. Banik, Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis, J. Neurosci. Res, vol.84, pp.1064-1075, 2006.

D. G. Stein, Is progesterone a worthy candidate as a novel therapy for traumatic brain injury?, Dialogues Clin. Neurosci, vol.13, pp.352-359, 2011.

E. A. Sribnick, S. Samantaray, A. Das, J. Smith, D. D. Matzelle et al., Postinjury estrogen treatment of chronic spinal cord injury improves locomotor function in rats, J. Neurosci. Res, vol.88, pp.1738-1750, 2010.

C. Stirone, S. P. Duckles, D. N. Krause, and V. Procaccio, Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels, Mol. Pharmacol, vol.68, pp.959-965, 2005.

K. R. Swartz, D. B. Fee, K. M. Joy, K. N. Roberts, S. Sun et al., Gender differences in spinal cord injury are not estrogen-dependent, J. Neurotrauma, vol.24, pp.473-480, 2007.

K. Takanami, H. Sakamoto, K. Matsuda, K. Hosokawa, M. Nishi et al., Expression of G protein-coupled receptor 30 in the spinal somatosensory system, Brain Res, vol.1310, pp.17-28, 2010.

T. Takao, N. Flint, L. Lee, X. Ying, J. Merrill et al., 17Beta-estradiol protects oligodendrocytes from cytotoxicity induced cell death, J. Neurochem, vol.89, pp.660-673, 2004.

I. M. Tarlov and H. Klinger, Spinal cord compression studies. II. Time limits for recovery after acute compression in dogs, AMA archives of neurology and psychiatry, vol.71, pp.271-290, 1954.

M. Tehranipour and A. Moghimi, Neuroprotective effects of testosterone on regenerating spinal cord motoneurons in rats, J. Motor Behav, vol.42, pp.151-155, 2010.

A. J. Thomas, R. P. Nockels, H. Q. Pan, C. I. Shaffrey, and M. Chopp, Progesterone is neuroprotective after acute experimental spinal cord trauma in rats, Spine, vol.24, pp.2134-2138, 1999.

C. Topsakal, N. Kilic, F. S. Erol, M. Kaplan, I. Akdemir et al., Medroxyprogesterone acetate, enoxaparin and pentoxyfylline cause alterations in lipid peroxidation, paraoxonase (PON1) activities and homocysteine levels in the acute oxidative stress in an experimental model of spinal cord injury, Acta Neurochir, vol.144, pp.1021-1031, 2002.

N. Vandenberk, E. E. Unluer, N. Gokmen, I. Yurekli, E. Okmen et al., Neuroprotective effects of progesterone in spinal cord ischemia in rabbits, Am. J. Emerg. Med, vol.31, pp.581-584, 2013.

N. Vasudevan and D. W. Pfaff, Non-genomic actions of estrogens and their interaction with genomic actions in the brain, Front. Neuroendocrinol, vol.29, pp.238-257, 2008.

C. B. Wade, S. Robinson, R. A. Shapiro, and D. M. Dorsa, Estrogen receptor (ER)alpha and ERbeta exhibit unique pharmacologic properties when coupled to activation of the mitogen-activated protein kinase pathway, Endocrinology, vol.142, pp.2336-2342, 2001.

A. A. Webb, C. B. Chan, A. Brown, and T. M. Saleh, Estrogen reduces the severity of autonomic dysfunction in spinal cord-injured male mice, Behav. Brain Res, vol.171, pp.338-349, 2006.

A. A. Webb and G. D. Muir, Sensorimotor behaviour following incomplete cervical spinal cord injury in the rat, Behav. Brain Res, vol.165, pp.147-159, 2005.

W. F. Wu, X. J. Tan, Y. B. Dai, V. Krishnan, M. Warner et al., Targeting estrogen receptor beta in microglia and T cells to treat experimental autoimmune encephalomyelitis, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.3543-3548, 2013.

J. D. Yager and J. Q. Chen, Mitochondrial estrogen receptors-new insights into specific functions, Trends Endocrinol. Metab, vol.18, pp.89-91, 2007.

S. H. Yang, R. Liu, E. J. Perez, Y. Wen, S. M. Stevens et al., Mitochondrial localization of estrogen receptor beta, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.4130-4135, 2004.

W. Young, Spinal cord contusion models. Prog. Brain Res, vol.137, pp.231-255, 2002.

T. Y. Yune, S. J. Kim, S. M. Lee, Y. K. Lee, Y. J. Oh et al., Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats, J. Neurotrauma, vol.21, pp.293-306, 2004.

Z. Zhang and L. Guth, Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration, Exp. Neurol, vol.147, pp.159-171, 1997.

Y. Zhang, X. Xiao, X. M. Zhang, Z. Q. Zhao, and Y. Q. Zhang, Estrogen facilitates spinal cord synaptic transmission via membrane-bound estrogen receptors: implications for pain hypersensitivity, J. Biol. Chem, vol.287, pp.33268-33281, 2012.

M. O. Ziehn, A. A. Avedisian, S. M. Dervin, E. A. Umeda, T. J. O'dell et al., Therapeutic testosterone administration preserves excitatory synaptic transmission in the hippocampus during autoimmune demyelinating disease, J. Neurosci, vol.32, pp.12312-12324, 2012.