, Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin Pharmacol Ther, vol.69, issue.3, pp.89-95, 2001.

M. Buyse, D. J. Sargent, A. Grothey, A. Matheson, and A. De-gramont, Biomarkers and surrogate end pointsdthe challenge of statistical validation, Nat Rev Clin Oncol, vol.7, issue.6, pp.309-326, 2010.

T. S. Rector, B. C. Taylor, and T. J. Wilt, Systematic review of prognostic tests, in methods guide for medical test reviews, 2012.

P. A. Lachenbruch, A. S. Rosenberg, E. Bonvini, M. W. Cavaill-e-coll, and R. B. Colvin, Biomarkers and surrogate endpoints in renal transplantation: present status and considerations for clinical trial design, Am J Transplant, vol.4, issue.4, pp.451-458, 2004.

M. S. Pepe, H. Janes, G. Longton, W. Leisenring, and P. Newcomb, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, Am J Epidemiol, vol.159, issue.9, pp.882-90, 2004.

J. H. Ware, The limitations of risk factors as prognostic tools, N Engl J Med, vol.355, issue.25, pp.2615-2622, 2006.

S. L. Spruance, J. E. Reid, M. Grace, and M. Samore, Hazard ratio in clinical trials, Antimicrob Agents Chemother, vol.48, issue.8, pp.2787-92, 2004.

Y. Foucher, C. Combescure, J. Ashton-chess, and M. Giral, Prognostic markers: data misinterpretation often leads to overoptimistic conclusions, Am J Transplant, vol.12, issue.4, pp.1060-1061, 2012.

P. J. Heagerty, T. Lumley, and M. S. Pepe, Time-dependent ROC curves for censored survival data and a diagnostic marker, Biometrics, vol.56, issue.2, pp.337-381, 2000.

A. Carobbio, E. Antonioli, P. Guglielmelli, A. M. Vannucchi, F. Delaini et al., Leukocytosis and risk stratification assessment in essential thrombocythemia, J Clin Oncol, vol.26, issue.16, pp.2732-2738, 2008.

B. Kaplan, J. Schold, and M. Hu, Poor predictive value of serum creatinine for renal allograft loss, Am J Transplant, vol.3, issue.12, pp.1560-1565, 2003.

T. J. Wang, P. Gona, M. G. Larson, G. H. Tofler, D. Levy et al., Multiple biomarkers for the prediction of first major cardiovascular events and death, N Engl J Med, vol.355, issue.25, pp.2631-2640, 2006.

R. D. Riley, G. Ridley, K. Williams, D. G. Altman, J. Hayden et al., Prognosis research: toward evidence-based results and a Cochrane methods group, ):863e5. author reply 865e6, vol.60, 2007.

D. L. Simel, J. Easter, and G. Tomlinson, Likelihood ratios, sensitivity, and specificity values can be back-calculated when the odds ratios are known, J Clin Epidemiol, vol.66, issue.4, pp.458-60, 2013.

J. J. Deeks and D. G. Altman, Diagnostic tests 4: likelihood ratios, BMJ, vol.329, issue.7458, pp.168-177, 2004.

R. Jaeschke, G. Guyatt, and D. Sackett, Users' guides to the medical literature: III. How to use an article about a diagnostic test: B. What are the results and will they help me in caring for my patients, JAMA, vol.271, pp.703-710, 1994.

I. A. Hauser, S. Spiegler, E. Kiss, S. Gauer, O. Sichler et al., Prediction of acute renal allograft rejection by urinary monokine induced by IFN-gamma (MIG), J Am Soc Nephrol, vol.16, issue.6, pp.1849-58, 2005.

S. Mook, M. Knauer, J. M. Bueno-de-mesquita, V. P. Retel, J. Wesseling et al., Metastatic potential of T1 breast cancer can be predicted by the 70-gene MammaPrint signature, Ann Surg Oncol, vol.17, issue.5, pp.1406-1419, 2010.

P. J. Heagerty and Y. Zheng, Survival model predictive accuracy and ROC curves, Biometrics, vol.61, issue.1, pp.92-105, 2005.

F. E. Harrell, K. L. Lee, and D. B. Mark, Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors, Stat Med, vol.15, issue.4, pp.361-87, 1996.

L. E. Chambless and G. Diao, Estimation of time-dependent area under the ROC curve for long-term risk prediction, Stat Med, vol.25, issue.20, pp.3474-86, 2006.

M. J. Pencina, D. Agostino, and R. B. , Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation, Stat Med, vol.23, issue.13, pp.2109-2132, 2004.

M. J. Pencina, D. Sr, and L. Song, Quantifying discrimination of Framingham risk functions with different survival C statistics, Stat Med, vol.31, issue.15, pp.1543-53, 2012.

H. Uno, T. Cai, M. J. Pencina, D. 'agostino, R. B. Wei et al., On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data, Stat Med, vol.30, issue.10, pp.1105-1122, 2011.

M. J. Pencina, D. Sr, D. Jr, and R. S. Vasan, Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond, Stat Med, vol.27, issue.2, pp.157-72, 2008.

J. S. Mandelblatt, V. B. Sheppard, A. Hurria, G. Kimmick, C. Isaacs et al., Breast cancer adjuvant chemotherapy decisions in older women: the role of patient preference and interactions with physicians, J Clin Oncol, vol.28, pp.3146-53, 2010.

N. Moumjid, . Carr-ere, . Mo, M. Charavel, and . Br, Clinical issues in shared decision-making applied to breast cancer, Health Expect, vol.6, issue.3, pp.222-229, 2003.

S. R. Cole and M. A. Hernan, Adjusted survival curves with inverse probability weights, Comput Methods Programs Biomed, vol.75, issue.1, pp.45-54, 2004.

D. Westreich, S. R. Cole, P. C. Tien, J. S. Chmiel, L. Kingsley et al., Time scale and adjusted survival curves for marginal structural Cox models, Am J Epidemiol, vol.171, issue.6, pp.691-700, 2010.

J. Xie and C. Liu, Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data, Stat Med, vol.24, pp.3089-110, 2005.

Y. Foucher, P. Daguin, A. Akl, M. Kessler, M. Ladri-ere et al., A clinical scoring system highly predictive of long-term kidney graft survival, Kidney Int, vol.78, issue.12, pp.1288-94, 2010.

D. J. Spiegelhalter, Probabilistic prediction in patient management and clinical trials, Stat Med, vol.5, issue.5, pp.421-454, 1986.