E. A. Kimbrel and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic, Nat Rev Drug Discov, vol.14, pp.681-692, 2015.

N. Tapia and H. R. Scholer, Molecular Obstacles to Clinical Translation of iPSCs, Cell stem cell, vol.19, pp.298-309, 2016.
DOI : 10.1016/j.stem.2016.06.017

S. Yamanaka, Induced pluripotent stem cells: past, present, and future, Cell stem cell, vol.10, pp.678-684, 2012.

N. Malik and M. S. Rao, A review of the methods for human iPSC derivation, Methods in molecular biology, vol.997, pp.23-33, 2013.

L. Warren, Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell stem cell, vol.7, pp.618-630, 2010.
DOI : 10.1016/j.stem.2010.08.012

URL : https://doi.org/10.1016/j.stem.2010.08.012

N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, and M. Hasegawa, Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc Jpn Acad Ser B Phys Biol Sci, vol.85, pp.348-362, 2009.

J. Yu, Human induced pluripotent stem cells free of vector and transgene sequences, Science, vol.324, pp.797-801, 2009.

D. Kim, Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Cell stem cell, vol.4, pp.472-476, 2009.

T. M. Schlaeger, A comparison of non-integrating reprogramming methods, Nature biotechnology, 2014.

E. Yakubov, G. Rechavi, S. Rozenblatt, and D. Givol, Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors, Biochemical and biophysical research communications, vol.394, pp.189-193, 2010.

L. Warren, Y. Ni, J. Wang, and X. Guo, Feeder-free derivation of human induced pluripotent stem cells with messenger RNA, Scientific reports, vol.2, p.657, 2012.
DOI : 10.1038/srep00657

URL : https://doi.org/10.1038/srep00657

J. Durruthy-durruthy, Rapid and efficient conversion of integration-free human induced pluripotent stem cells to GMP-grade culture conditions, PloS one, vol.9, p.94231, 2014.

K. I. Lee, S. Y. Lee, and D. Y. Hwang, Extracellular Matrix-Dependent Generation of Integration-and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method, Stem Cells Int, p.6853081, 2016.

. Scientific-reports-|, , vol.8, 2018.

Y. Xue, Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells, PloS one, vol.8, p.70573, 2013.
DOI : 10.1371/journal.pone.0070573

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0070573&type=printable

M. Nishizawa, Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity, Cell stem cell, vol.19, pp.341-354, 2016.
DOI : 10.1016/j.stem.2016.06.019

URL : https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/218003/1/yigak04170.pdf

T. Zhou, Generation of human induced pluripotent stem cells from urine samples, Nature protocols, vol.7, pp.2080-2089, 2012.

M. Jouni, Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome, J Am Heart Assoc, vol.4, p.2159, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01199430

X. Guan, Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery, Stem cell research, vol.12, pp.467-480, 2014.
DOI : 10.1016/j.scr.2013.12.004

URL : https://doi.org/10.1016/j.scr.2013.12.004

K. Si-tayeb, Urine-sample-derived human induced pluripotent stem cells as a model to study PCSK9-mediated autosomal dominant hypercholesterolemia, Dis Model Mech, vol.9, pp.81-90, 2016.
DOI : 10.1242/dmm.022277

URL : https://hal.archives-ouvertes.fr/hal-01233240

A. Dorrenhaus, Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system, Arch Toxicol, vol.74, pp.618-626, 2000.

C. Steichen, Human Induced Pluripotent Stem (hiPS) Cells from Urine Samples: A Non-Integrative and Feeder-Free Reprogramming Strategy, Curr Protoc Hum Genet, vol.92, issue.21, p.22, 2017.
DOI : 10.1002/cphg.26

URL : https://hal.archives-ouvertes.fr/hal-01833116

J. Choi, A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs, Nature biotechnology, vol.33, pp.1173-1181, 2015.

A. Kyttala, Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential, Stem Cell Reports, 2016.

F. Rouhani, Genetic background drives transcriptional variation in human induced pluripotent stem cells, PLoS genetics, vol.10, p.1004432, 2014.
DOI : 10.1371/journal.pgen.1004432

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004432&type=printable

M. Soumillon, D. Cacchiarelli, S. Semrau, A. Van-oudenaarden, and T. S. Mikkelsen, Characterization of directed differentiation by high-throughput single-cell RNA-Seq, BioRxiv, 2014.
DOI : 10.1101/003236

URL : https://www.biorxiv.org/content/early/2014/03/05/003236.full.pdf

S. Kilens, Parallel derivation of isogenic human primed and naive induced pluripotent stem cells, Nat Commun, vol.9, p.360, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881146

S. Bharadwaj, Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology, Stem cells, vol.31, pp.1840-1856, 2013.

L. K. Conlin, Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis, Human molecular genetics, vol.19, pp.1263-1275, 2010.

D. Paull, Automated, high-throughput derivation, characterization and differentiation of induced pluripotent stem cells, Nature methods, vol.12, pp.885-892, 2015.

N. Salomonis, Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium, Stem Cell Reports, vol.7, pp.110-125, 2016.

K. Si-tayeb, Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells, Hepatology, vol.51, pp.297-305, 2010.

H. Kilpinen, Common genetic variation drives molecular heterogeneity in human iPSCs, Nature, 2017.
DOI : 10.1101/055160

URL : https://www.biorxiv.org/content/biorxiv/early/2016/05/25/055160.full.pdf

N. Yoshioka, Efficient Generation of Human iPSCs by a Synthetic Self-Replicative RNA, Cell stem cell, vol.13, pp.246-254, 2013.

R. Lang, Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours, PloS one, vol.8, p.53980, 2013.

J. Zhang, Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method, Circ Res, vol.111, issue.9, pp.1125-1161, 2012.