W. J. Lesterhuis, J. B. Haanen, and C. J. Punt, Cancer Immunotherapy-revisited, Nat. Rev. Drug Discovery, vol.10, 2011.

D. Pardoll and J. Allison, Cancer Immunotherapy: Breaking the Barriers to Harvest the Crop, Nat. Med, vol.10, pp.887-892, 2004.

D. S. Chen and I. Mellman, Oncology Meets Immunology: The Cancer-Immunity Cycle, Immunity, pp.39-40, 2013.

N. P. Restifo, M. E. Dudley, and S. A. Rosenberg, Adoptive Immunotherapy for Cancer: Harnessing the T Cell Response, Nat. Rev. Immunol, vol.12, pp.269-281, 2012.

S. A. Rosenberg and N. P. Restifo, Adoptive Cell Transfer as Personalized Immunotherapy for Human Cancer, vol.348, pp.62-68, 2015.

A. D. Fesnak, C. H. June, and B. L. Levine, Engineered T Cells: The Promise and Challenges of Cancer Immunotherapy, Nat. Rev. Cancer, vol.16, pp.566-581, 2016.

S. Farkona, E. P. Diamandis, and I. M. Blasutig, Cancer Immunotherapy: The Beginning of the End of Cancer, BMC Med, vol.14, p.73, 2016.

J. P. Allison, Immune Checkpoint Blockade in Cancer Therapy: The 2015 Lasker-Debakey Clinical Medical Research Award, JAMA, J. Am. Med. Assoc, vol.314, pp.1113-1114, 2015.

P. Sharma, K. Wagner, J. D. Wolchok, and J. P. Allison, Novel Cancer Immunotherapy Agents With Survival Benefit: Recent Successes and Next Steps, Nat. Rev. Cancer, vol.11, pp.805-812, 2011.

Z. Hu, P. A. Ott, and C. J. Wu, Towards Personalized, TumourSpecific, Therapeutic Vaccines for Cancer, Nat. Rev. Immunol, vol.18, pp.168-182, 2017.

A. Azvolinsky, Cancer Vaccines: Always a Bridesmaid, Never a Bride, J. Natl. Cancer Inst, vol.105, pp.248-249, 2013.

K. F. Bol, G. Schreibelt, W. R. Gerritsen, I. J. De-vries, and C. G. Figdor, Dendritic Cell-Based Immunotherapy: State of the Art and Beyond, Clin. Cancer Res, vol.22, 1897.

C. E. Handy and E. S. Antonarakis, Sipuleucel-T for the Treatment of Prostate Cancer: Novel Insights and Future Directions, Future Oncol, vol.14, pp.907-917, 2018.

O. Tureci, M. Vormehr, M. Diken, S. Kreiter, C. Huber et al., Targeting the Heterogeneity of Cancer With Individualized Neoepitope Vaccines, Clin. Cancer Res, vol.22, pp.1885-1896, 2016.

T. L. Whiteside, S. Demaria, M. E. Rodriguez-ruiz, H. M. Zarour, and I. Melero, Emerging Opportunities and Challenges in Cancer Immunotherapy, Clin. Cancer Res, vol.22, pp.1845-1855, 2016.

S. Zimmermann and B. Lepenies, Glycans as Vaccine Antigens and Adjuvants: Immunological Considerations, Methods Mol. Biol, pp.11-26, 1331.
DOI : 10.1007/978-1-4939-2874-3_2

C. Anish, B. Schumann, C. L. Pereira, and P. H. Seeberger, Chemical Biology Approaches to Designing Defined Carbohydrate Vaccines, Chem. Biol, vol.21, pp.38-50, 2014.
DOI : 10.1016/j.chembiol.2014.01.002

URL : https://doi.org/10.1016/j.chembiol.2014.01.002

S. C. Lockhart and . Vaccines, Expert Rev. Vaccines, vol.2, pp.633-648, 2003.

A. A. Lindberg, Glycoprotein Conjugate Vaccines. Vaccine, vol.17, pp.28-36, 1999.
DOI : 10.1016/s0264-410x(99)00232-7

Y. L. Huang and C. Y. Wu, Carbohydrate-Based Vaccines: Challenges and Opportunities, Expert Rev. Vaccines, vol.9, pp.1257-1274, 2010.
DOI : 10.1586/erv.10.120

X. J. Zheng, F. Yang, M. Zheng, C. X. Huo, and Y. Zhang,

S. , Improvement of the Immune Efficacy of Carbohydrate Vaccines By Chemical Modification on the GM3 Antigen, Org. Biomol. Chem, vol.13, pp.6399-6406, 2015.

G. Ragupathi, P. Damani, G. Srivastava, O. Srivastava, S. J. Sucheck et al., Sle (a), Ca19?9) and Construction of an Immunogenic Sle(a) Vaccine, Synthesis of Sialyl Lewis(a), vol.58, pp.1397-1405, 2009.

H. Y. Son, V. Apostolopoulos, and C. W. Kim, Tn Immunotherapy Avoiding Immune Deviation. Int. J. Immunopathol. Pharmacol, vol.29, pp.812-817, 2016.

S. A. Brooks, T. M. Carter, L. Royle, D. J. Harvey, S. A. Fry et al., Altered Glycosylation of Proteins in Cancer: What is the Potential for New Anti-Tumour Strategies, Anti-Cancer Agents Med. Chem, 2008.

D. H. Dube and C. R. Bertozzi, Glycans in Cancer and Inflammation-potential for Therapeutics and Diagnostics, Nat. Rev. Drug Discovery, vol.4, pp.477-488, 2005.

A. Kobata and J. Amano, Altered Glycosylation of Proteins Produced By Malignant Cells, and Application for the Diagnosis and Immunotherapy of Tumours, Immunol. Cell Biol, vol.83, pp.429-439, 2005.

Y. J. Kim and A. Varki, Perspectives on the Significance of Altered Glycosylation of Glycoproteins in Cancer, Glycoconjugate J, vol.14, pp.569-576, 1997.

V. Padler-karavani, Aiming At the Sweet Side of Cancer: Aberrant Glycosylation as Possible Target for Personalized-Medicine, Cancer Lett, vol.352, pp.102-112, 2014.

T. Angata and A. Varki, Chemical Diversity in the Sialic Acids and Related Alpha-Keto Acids: An Evolutionary Perspective, Chem. Rev, vol.102, pp.439-469, 2002.

H. H. Chou, H. Takematsu, S. Diaz, J. Iber, E. Nickerson et al., A Mutation in Human Cmp-Sialic Acid Hydroxylase Occurred After the Homo-Pan Divergence, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.11751-11756, 1998.

P. Tangvoranuntakul, P. Gagneux, S. Diaz, M. Bardor, N. Varki et al., Human Uptake and Incorporation of an Immunogenic Nonhuman Dietary Sialic Acid, Proc. Natl. Acad. Sci. U. S. A, vol.100, 2003.

M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, Mechanism of Uptake and Incorporation of the Non-Human Sialic Acid NGlycolylneuraminic Acid Into Human Cells, J. Biol. Chem, vol.280, pp.4228-4237, 2005.

V. Padler-karavani, H. Yu, H. Cao, H. Chokhawala, F. Karp et al., Abundance, and Composition of Anti-Neu5Gc Antibodies in Normal Humans: Potential Implications for Disease, vol.18, pp.818-830, 2008.

V. Padler-karavani, N. Hurtado-ziola, M. Pu, H. Yu, S. Huang et al., Human XenoAutoantibodies Against a Non-Human Sialic Acid Serve as Novel Serum Biomarkers and Immunotherapeutics in Cancer. Cancer Res, vol.71, pp.3352-3363, 2011.

O. M. Pearce, H. Laubli, A. Verhagen, P. Secrest, J. Zhang et al., Inverse Hormesis of Cancer Growth Mediated By Narrow Ranges of Tumor-Directed Antibodies, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.5998-6003, 2014.

R. H. Fang, Y. Jiang, J. C. Fang, and L. Zhang, Cell MembraneDerived Nanomaterials for Biomedical Applications, Biomaterials, vol.128, pp.69-83, 2017.

J. Su, H. Sun, Q. Meng, P. Zhang, Q. Yin et al., Enhanced Blood Suspensibility and Laser-Activated Tumor-Specific Drug Release of Theranostic Mesoporous Silica Nanoparticles By Functionalizing With Erythrocyte Membranes, vol.7, pp.523-537, 2017.

B. T. Luk, R. H. Fang, C. M. Hu, J. A. Copp, S. Thamphiwatana et al., Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors, Theranostics, vol.6, pp.1004-1011, 2016.

C. H. Villa, D. C. Pan, S. Zaitsev, D. B. Cines, D. L. Siegel et al., Delivery of Drugs Bound to Erythrocytes: New Avenues for an Old Intravascular Carrier, Ther. Delivery, vol.6, pp.795-826, 2015.

T. L. Steck, The Organization of Proteins in the Human Red Blood Cell Membrane. A Review, J. Cell Biol, vol.62, 1974.

K. Ganguly, J. C. Murciano, R. Westrick, J. Leferovich, D. B. Cines et al., The Glycocalyx Protects ErythrocyteBound Tissue-Type Plasminogen Activator From Enzymatic Inhibition, J. Pharmacol. Exp. Ther, vol.321, pp.158-164, 2007.

U. Galili, Discovery of the Natural Anti-Gal Antibody and Its Past and Future Relevance to Medicine, Xenotransplantation, vol.20, pp.138-147, 2013.

F. Naso, U. Stefanelli, E. Buratto, G. Lazzari, A. Perota et al., Alpha-Gal Inactivated Heart Valve Bioprostheses Exhibit an Anti-Calcification Propensity Similar to Knockout Tissues, Tissue Eng., Part A, vol.23, pp.1181-1195, 2017.

A. Salama, M. Mosser, X. Leveque, A. Perota, J. P. Judor et al., Neu5Gc and ?1?3 GAL Xenoantigen Knockout Does Not Affect Glycemia Homeostasis and Insulin Secretion in Pigs, vol.66, pp.987-993, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02156128

L. Ben-arye, S. Yu, H. Chen, X. Padler-karavani, and V. , Profiling Anti-Neu5Gc IgG in Human Sera With a Sialoglycan Microarray Assay, 2017.

S. L. Diaz, V. Padler-karavani, D. Ghaderi, N. Hurtado-ziola, H. Yu et al., Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid in Human Tissues and Biotherapeutic Products, J. Biol. Chem, vol.4, issue.e4241, 2009.

C. Siegrist, Vaccine Immunology. Vaccines, vol.5, pp.17-36, 2008.

M. K. Schunk and G. E. Macallum, Applications and Optimization of Immunization Procedures, ILAR J, vol.46, pp.241-257, 2005.

O. M. Pearce, H. Laubli, J. Bui, and A. Varki, Hormesis in Cancer Immunology: Does the Quantity of an Immune Reactant Matter? Oncoimmunology, vol.3, 2014.

J. Okerblom and A. Varki, Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid, vol.18, pp.1155-1171, 2017.

M. Hedlund, V. Padler-karavani, N. M. Varki, and A. Varki, Evidence for a Human-Specific Mechanism for Diet and AntibodyMediated Inflammation in Carcinoma Progression, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.18936-18941, 2008.

A. N. Samraj, O. M. Pearce, H. Laübli, A. N. Crittenden, A. K. Bergfeld et al., A Red Meat-Derived Glycan Promotes Inflammation and Cancer Progression, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.542-547, 2015.

A. N. Samraj, K. A. Bertrand, R. Luben, Z. Khedri, H. Yu et al., Polyclonal Human Antibodies Against Glycans Bearing Red MeatDerived Non-Human Sialic Acid N-Glycolylneuraminic Acid Are Stable, Reproducible, Complex and Vary Between Individuals: Total Antibody Levels Are Associated With Colorectal Cancer Risk, PLoS One, vol.13, 2018.

R. Amon, S. L. Ben-arye, L. Engler, H. Yu, N. Lim et al., Glycan Microarray Reveal Induced Iggs Repertoire Shift Against a Dietary Carbohydrate in Response to Rabbit Anti-Human Thymocyte Therapy, Oncotarget, vol.8, pp.112236-112244, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01885572

J. Yin, A. Hashimoto, M. Izawa, K. Miyazaki, G. Y. Chen et al., Hypoxic Culture Induces Expression of Sialin, a Sialic Acid Transporter, and CancerAssociated Gangliosides Containing Non-Human Sialic Acid on Human Cancer Cells, Cancer Res, vol.66, 2006.

A. M. Scott, J. D. Wolchok, and L. J. Old, Antibody Therapy of Cancer, Nat. Rev. Cancer, vol.12, pp.278-287, 2012.

A. M. Scott, J. P. Allison, J. D. Wolchok, G. A. Poland, I. G. Ovsyannikova et al., Heterogeneity in Vaccine Immune Response: The Role of Immunogenetics and the Emerging Field of Vaccinomics, Clin. Pharmacol. Ther, vol.12, issue.59, pp.653-664, 2007.

A. Antia, H. Ahmed, A. Handel, N. E. Carlson, I. J. Amanna et al., No. e2006601. (61) Ye, Z.; Qian, Q.; Jin, H.; Qian, Q. Cancer Vaccine: Learning Lessons From Immune Checkpoint Inhibitors, PLoS Biol, vol.16, pp.263-268, 2018.

P. L. Lollini, F. Cavallo, P. Nanni, and G. Forni, Vaccines for Tumour Prevention, Nat. Rev. Cancer, vol.6, pp.204-216, 2006.

M. T. Bethune and A. V. Joglekar, Personalized T Cell-Mediated Cancer Immunotherapy: Progress and Challenges, Curr. Opin. Biotechnol, vol.48, pp.142-152, 2017.
DOI : 10.1016/j.copbio.2017.03.024

URL : https://doi.org/10.1016/j.copbio.2017.03.024

O. J. Finn, Human Tumor Antigens Yesterday, Today, and Tomorrow, Cancer Immunol. Res, vol.5, pp.347-354, 2017.
DOI : 10.1158/2326-6066.cir-17-0112

URL : http://cancerimmunolres.aacrjournals.org/content/canimm/5/5/347.full.pdf

V. Padler-karavani, Glycan Microarray Reveal the Sweet Side of Cancer Vaccines, Cell Chem. Biol, vol.23, pp.1446-1447, 2016.

R. Amon, E. M. Reuven, S. Ben-arye, and V. Padlerkaravani, Glycans in Immune Recognition and Response, Carbohydr. Res, vol.389, pp.115-122, 2014.

A. N. Samraj, H. Laübli, N. Varki, and A. Varki, Involvement of a Non-Human Sialic Acid in Human Cancer, Front. Oncol, vol.4, p.33, 2014.

M. Magnani, L. Chiarantini, E. Vittoria, U. Mancini, L. Rossi et al., Blood Cells as an Antigen-Delivery System, Biotechnol. Appl. Biochem, vol.16, pp.188-194, 1992.

A. Banz, M. Cremel, A. Mouvant, N. Guerin, F. Horand et al., Tumor Growth Control Using Red Blood Cells as the Antigen Delivery System and Poly(I:C), J. Immunother, vol.35, pp.409-417, 2012.

A. Banz, M. Cremel, A. Rembert, and Y. Godfrin, Situ Targeting of Dendritic Cells By Antigen-Loaded Red Blood Cells: A Novel Approach to Cancer Immunotherapy, Vaccine, vol.28, 2010.

G. F. Springer, Immunoreactive T and Tn Epitopes in Cancer Diagnosis, Prognosis, and Immunotherapy, J. Mol. Med, vol.75, pp.594-602, 1997.

V. R. Muzykantov, Drug Delivery By Red Blood Cells: Vascular Carriers Designed By Mother Nature, Expert Opin. Drug Delivery, vol.7, pp.403-427, 2010.

L. Rao, L. L. Bu, J. H. Xu, B. Cai, G. T. Yu et al., Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance, vol.11, pp.6225-6236, 2015.

L. Xia, D. S. Schrump, and J. C. Gildersleeve, Whole-Cell Cancer Vaccines Induce Large Antibody Responses to Carbohydrates and Glycoproteins, Cell Chem. Biol, vol.23, pp.1515-1525, 2016.

B. Schumann, K. Reppe, P. Kaplonek, A. Wahlbrink, C. Anish et al., Development of an Efficacious, Semisynthetic Glycoconjugate Vaccine Candidate Against, ACS Cent. Sci, vol.4, pp.357-361, 2018.

A. Geissner, P. H. Seeberger, and . Glycan, Arrays: From Basic Biochemical Research to Bioanalytical and Biomedical Applications, Annu. Rev. Anal. Chem, vol.9, pp.223-247, 2016.

F. Pappalardo, M. Pennisi, F. Castiglione, and S. Motta, Vaccine Protocols Optimization: In Silico Experiences, Biotechnol. Adv, vol.28, pp.82-93, 2010.

C. D. Zahm, V. T. Colluru, and D. G. Mcneel, Vaccination With High-Affinity Epitopes Impairs Antitumor Efficacy By Increasing PD-1 Expression on CD8, Cancer Immunol. Res, vol.5, pp.630-641, 2017.

L. H. Butterfield, Cancer Vaccines, BMJ, vol.350, p.988, 2015.

M. Zeng, E. Nourishirazi, E. Guinet, and M. Nouri-shirazi, The Genetic Background Influences the Cellular and Humoral Immune Responses to Vaccines, Clin. Exp. Immunol, vol.186, pp.190-204, 2016.

L. Borsig, R. Wong, R. O. Hynes, N. M. Varki, and A. Varki, Synergistic Effects of L-and P-Selectin in Facilitating Tumor Metastasis Can Involve Non-Mucin Ligands and Implicate Leukocytes as Enhancers of Metastasis, Proc. Natl. Acad. Sci. U. S. A, vol.99, 2002.