B. Rabbani, M. Tekin, and N. Mahdieh, The promise of whole-exome sequencing in medical genetics, J Hum Genet, vol.59, p.24196381, 2014.

T. Frebourg, The challenge for the next generation of medical geneticists, Hum Mutat, vol.35, p.24838402, 2014.

J. Wu, Y. Li, and R. Jiang, Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies, PLoS Genet, vol.10, p.1004237, 2014.

S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk et al., A survey of tools for variant analysis of next-generation genome sequencing data, Brief Bioinform, vol.15, pp.256-278, 2014.

J. M. Eggington, K. R. Bowles, K. Moyes, S. Manley, L. Esterling et al., A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes, Clin Genet, vol.86, pp.229-237, 2014.

G. Kichaev, W. Yang, S. Lindstrom, F. Hormozdiari, E. Eskin et al., Integrating functional data to prioritize causal variants in statistical fine-mapping studies, PLoS Genet, vol.10, p.1004722, 2014.
DOI : 10.1371/journal.pgen.1004722

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1004722&type=printable

A. González-pérez and N. López-bigas, Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel, Am J Hum Genet, vol.88, pp.440-449, 2011.

M. S. Cline and R. Karchin, Using bioinformatics to predict the functional impact of SNVs, Bioinforma Oxf Engl, vol.27, pp.441-448, 2011.

K. Frousios, C. S. Iliopoulos, T. Schlitt, and M. A. Simpson, Predicting the functional consequences of non-synonymous DNA sequence variants-evaluation of bioinformatics tools and development of a consensus strategy, Genomics, vol.102, p.23831115, 2013.

L. Cartegni, S. L. Chew, and A. R. Krainer, Listening to silence and understanding nonsense: exonic mutations that affect splicing, Nat Rev Genet, vol.3, p.11967553, 2002.
DOI : 10.1038/nrg775

T. Sterne-weiler, J. Howard, M. Mort, D. N. Cooper, and J. R. Sanford, Loss of exon identity is a common mechanism of human inherited disease, Genome Res, vol.21, pp.1563-1571, 2011.

A. B. Spurdle, F. J. Couch, F. Hogervorst, P. Radice, and O. M. Sinilnikova, Prediction and Assessment of Splicing Alterations: Implications for clinical testing, Hum Mutat, vol.29, pp.1304-1313, 2008.

I. Tournier, M. Vezain, A. Martins, F. Charbonnier, S. Baert-desurmont et al., A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects, Hum Mutat, vol.29, p.18561205, 2008.

J. C. Théry, S. Krieger, P. Gaildrat, F. Révillion, M. Buisine et al., Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes, Eur J Hum Genet EJHG, vol.19, pp.1052-1058, 2011.

C. Houdayer, V. Caux-moncoutier, S. Krieger, M. Barrois, F. Bonnet et al., Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants, Hum Mutat, vol.33, p.22505045, 2012.

S. Ke, S. Shang, S. M. Kalachikov, I. Morozova, L. Yu et al., Quantitative evaluation of all hexamers as exonic splicing elements, Genome Res, vol.21, p.21659425, 2011.
DOI : 10.1101/gr.119628.110

URL : http://genome.cshlp.org/content/21/8/1360.full.pdf

D. Giacomo, D. Gaildrat, P. Abuli, A. Abdat, J. Frébourg et al., Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements, Hum Mutat, vol.34, p.23983145, 2013.

S. Erkelenz, S. Theiss, M. Otte, M. Widera, J. O. Peter et al., Genomic HEXploring allows landscaping of novel potential splicing regulatory elements, Nucleic Acids Res, vol.42, p.25147205, 2014.
DOI : 10.1093/nar/gku736

URL : https://academic.oup.com/nar/article-pdf/42/16/10681/14123854/gku736.pdf

H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico et al., The human splicing code reveals new insights into the genetic determinants of disease, Science, 2014.

D. Baralle, A. Lucassen, and E. Buratti, Missed threads. The impact of pre-mRNA splicing defects on clinical practice, EMBO Rep, vol.10, pp.810-816, 2009.

K. H. Lim, L. Ferraris, M. E. Filloux, B. J. Raphael, and W. G. Fairbrother, Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes, Proc Natl Acad Sci U S A, vol.108, p.21685335, 2011.
DOI : 10.1073/pnas.1101135108

URL : http://www.pnas.org/content/108/27/11093.full.pdf

P. Grandval, A. J. Fabre, P. Gaildrat, S. Baert-desurmont, M. Buisine et al., UMD-MLH1/MSH2/ MSH6 databases: description and analysis of genetic variations in French Lynch syndrome families, Database J Biol Databases Curation, p.36, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01681805

B. A. Thompson, A. B. Spurdle, J. Plazzer, M. S. Greenblatt, K. Akagi et al., Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database, Nat Genet, vol.46, p.24362816, 2014.

P. Lastella, N. C. Surdo, N. Resta, G. Guanti, and A. Stella, In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon-and tissue-specific effects, BMC Genomics, vol.7, p.16995940, 2006.

F. Charbonnier, C. Martin, M. Scotte, L. Sibert, V. Moreau et al., Alternative splicing of MLH1 messenger RNA in human normal cells, Cancer Res, vol.55, p.7728749, 1995.

M. Genuardi, A. Viel, D. Bonora, E. Capozzi, A. Bellacosa et al., Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility, Hum Genet, vol.102, p.9490293, 1998.

B. A. Thompson, A. Martins, and A. B. Spurdle, A review of mismatch repair gene transcripts: issues for interpretation of mRNA splicing assays, Clin Genet, 2014.

M. Vezain, P. Saugier-veber, E. Goina, R. Touraine, V. Manel et al., A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy, Hum Mutat, vol.31, pp.1110-1125, 2010.

M. Raponi, J. Kralovicova, E. Copson, P. Divina, D. Eccles et al., Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6, Hum Mutat, vol.32, p.21309043, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00620579

L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, ESEfinder: A web resource to identify exonic splicing enhancers, Nucleic Acids Res, vol.31, p.12824367, 2003.
DOI : 10.1093/nar/gkg616

URL : https://academic.oup.com/nar/article-pdf/31/13/3568/9487615/gkg616.pdf

P. J. Smith, C. Zhang, J. Wang, S. L. Chew, M. Q. Zhang et al., An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers, Hum Mol Genet, vol.15, p.16825284, 2006.

F. Desmet, D. Hamroun, M. Lalande, G. Collod-béroud, M. Claustres et al., Human Splicing Finder: an online bioinformatics tool to predict splicing signals, Nucleic Acids Res, vol.37, p.67, 2009.
DOI : 10.1093/nar/gkp215

URL : https://hal.archives-ouvertes.fr/inserm-00396239

F. Pagani, C. Stuani, M. Tzetis, E. Kanavakis, A. Efthymiadou et al., New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12, Hum Mol Genet, vol.12, p.12719375, 2003.

F. Pagani, M. Raponi, and F. E. Baralle, Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution, Proc Natl Acad Sci U S A, vol.102, p.15840711, 2005.

M. Baralle, N. Skoko, A. Knezevich, D. Conti, L. Motti et al., NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region, FEBS Lett, vol.580, p.16870183, 2006.

J. Auclair, M. P. Busine, C. Navarro, E. Ruano, G. Montmain et al., Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing, Hum Mutat, vol.27, p.16395668, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00427891

P. Gaildrat, S. Krieger, D. Giacomo, D. Abdat, J. Révillion et al., Multiple sequence variants of BRCA2 exon 7 alter splicing regulation, J Med Genet, vol.49, pp.609-617, 2012.

T. W. Prior, A. R. Krainer, Y. Hua, K. J. Swoboda, P. C. Snyder et al., A positive modifier of spinal muscular atrophy in the SMN2 gene, Am J Hum Genet, vol.85, pp.408-413, 2009.

F. Liu and C. Gong, Tau exon 10 alternative splicing and tauopathies, Mol Neurodegener, vol.3, issue.8, 2008.
DOI : 10.1186/1750-1326-3-8

URL : https://molecularneurodegeneration.biomedcentral.com/track/pdf/10.1186/1750-1326-3-8

G. Plotz, J. Raedle, A. Brieger, J. Trojan, and S. Zeuzem, N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha, Nucleic Acids Res, vol.31, p.12799449, 2003.

A. J. Buckler, D. D. Chang, S. L. Graw, J. D. Brook, D. A. Haber et al., Exon amplification: a strategy to isolate mammalian genes based on RNA splicing, Proc Natl Acad Sci U S A, vol.88, p.1850845, 1991.

P. Gaildrat, A. Killian, A. Martins, I. Tournier, T. Frébourg et al., Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants, Methods Mol Biol Clifton NJ, vol.653, pp.249-257, 2010.

S. N. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, vol.77, p.2744487, 1989.