B. Lorber and . Listeriosis, Clin Infect Dis, vol.24, issue.1, pp.1-9, 1997.

C. Charlier, E. Perrodeau, A. Leclercq, B. Cazenave, B. Pilmis et al., Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study, Lancet Infect Dis, vol.17, issue.5, p.28139432, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01475849

J. A. Vazquez-boland, M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-bernal et al., Listeria pathogenesis and molecular virulence determinants, Clin Microbiol Rev, vol.14, issue.3, p.88991, 2001.
DOI : 10.1128/cmr.14.3.584-640.2001

URL : https://cmr.asm.org/content/14/3/584.full.pdf

M. Scortti, H. J. Monzo, L. Lacharme-lora, D. A. Lewis, and J. A. Vazquez-boland, The PrfA virulence regulon, Microbes Infect, vol.9, issue.10, p.17764998, 2007.
DOI : 10.1016/j.micinf.2007.05.007

C. Deshayes, M. K. Bielecka, R. J. Cain, M. Scortti, A. De-las-heras et al., Allosteric mutants show that PrfA activation is dispensable for vacuole escape but required for efficient spread and Listeria survival in vivo, Mol Microbiol, vol.85, issue.3, p.3443378, 2012.
DOI : 10.1111/j.1365-2958.2012.08121.x

URL : http://europepmc.org/articles/pmc3443378?pdf=render

M. L. Reniere, A. T. Whiteley, K. L. Hamilton, S. M. John, P. Lauer et al., Glutathione activates virulence gene expression of an intracellular pathogen, Nature, vol.517, issue.7533, p.4305340, 2015.
DOI : 10.1038/nature14029

URL : http://europepmc.org/articles/pmc4305340?pdf=render

R. B. Vasanthakrishnan, A. De-las-heras, M. Scortti, C. Deshayes, N. Colegrave et al., PrfA regulation offsets the cost of Listeria virulence outside the host, Environ Microbiol, vol.17, issue.11, p.4737189, 2015.

N. E. Freitag, G. C. Port, and M. D. Miner, Listeria monocytogenes-from saprophyte to intracellular pathogen, Nat Rev Microbiol, vol.7, issue.9, p.2813567, 2009.
DOI : 10.1038/nrmicro2171

URL : http://europepmc.org/articles/pmc2813567?pdf=render

H. Hof, T. Nichterlein, and M. Kretschmar, Management of listeriosis, Clin Microbiol Rev, vol.10, issue.2, p.172923, 1997.
DOI : 10.1128/cmr.10.2.345

URL : https://cmr.asm.org/content/cmr/10/2/345.full.pdf

M. E. Temple and M. C. Nahata, Treatment of listeriosis, Ann Pharmacother, vol.34, issue.5, p.10852095, 2000.
DOI : 10.1345/aph.19315

M. E. Falagas, E. K. Vouloumanou, G. Samonis, K. Z. Vardakas, and . Fosfomycin, Clin Microbiol Rev, vol.29, issue.2, pp.321-368, 2016.

P. Central and P. , , p.4786888

B. Grabein, W. Graninger, R. Bano, J. Dinh, A. Liesenfeld et al., Intravenous fosfomycin-back to the future. Systematic review and meta-analysis of the clinical literature, Clin Microbiol Infect, vol.23, issue.6, p.27956267, 2017.

S. Sastry and Y. Doi, Fosfomycin: Resurgence of an old companion, J Infect Chemother, vol.22, issue.5, p.4833629, 2016.
DOI : 10.1016/j.jiac.2016.01.010

URL : http://europepmc.org/articles/pmc4833629?pdf=render

D. Hendlin, E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller et al., Phosphonomycin, a new antibiotic produced by strains of streptomyces, Science, vol.166, issue.3901, pp.122-125, 1969.

R. Troxler, A. Von-graevenitz, G. Funke, B. Wiedemann, and I. Stock, Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains, Clin Microbiol Infect, vol.6, issue.10, pp.525-560, 2000.

H. Hof, Listeriosis: therapeutic options, FEMS Immunol Med Microbiol, vol.35, issue.3, pp.203-208, 2003.

M. Scortti, L. Lacharme-lora, M. Wagner, I. Chico-calero, P. Losito et al., Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro-in vivo paradox, Nat Med, vol.12, issue.5, pp.515-522, 2006.

J. A. Lepe, M. J. Torres, Y. Smani, R. Parra-millan, J. Pachon et al., In vitro and intracellular activities of fosfomycin against clinical strains of Listeria monocytogenes, Int J Antimicrob Agents, vol.43, issue.2, p.24315790, 2014.

I. Chico-calero, M. Suarez, B. Gonzalez-zorn, M. Scortti, J. Slaghuis et al., Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria, Proc Natl Acad Sci, vol.99, issue.1, p.117577, 2002.

M. T. Ripio, K. Brehm, M. Lara, M. Suarez, and J. A. Vazquez-boland, Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors, J Bacteriol, vol.179, issue.22, p.179662, 1997.
DOI : 10.1128/jb.179.22.7174-7180.1997

URL : https://jb.asm.org/content/179/22/7174.full.pdf

T. Chakraborty, M. Leimeister-wachter, E. Domann, M. Hartl, W. Goebel et al., Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene, J Bacteriol, vol.174, issue.2, p.205751, 1992.

K. L. Fillgrove, S. Pakhomova, M. R. Schaab, M. E. Newcomer, and R. N. Armstrong, Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes, Biochemistry, vol.46, issue.27, 2007.

K. L. Fillgrove, S. Pakhomova, M. E. Newcomer, and R. N. Armstrong, Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms, J Am Chem Soc, vol.125, issue.51, pp.15730-15731, 2003.

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat Microbiol, vol.2, p.27723724, 2016.
DOI : 10.1038/nmicrobiol.2016.185

URL : https://hal.archives-ouvertes.fr/pasteur-01415883

R. H. Orsi and M. Wiedmann, Characteristics and distribution of Listeria spp., including Listeria species newly described since, Appl Microbiol Biotechnol, vol.100, issue.12, p.4875933, 2009.
DOI : 10.1007/s00253-016-7552-2

URL : https://link.springer.com/content/pdf/10.1007%2Fs00253-016-7552-2.pdf

R. I. Aminov and R. I. Mackie, Evolution and ecology of antibiotic resistance genes, FEMS Microbiol Lett, vol.271, issue.2, p.17490428, 2007.

G. D. Wright, The antibiotic resistome: the nexus of chemical and genetic diversity, Nat Rev Microbiol, vol.5, issue.3, pp.175-86, 2007.

J. L. Martinez, T. M. Coque, and F. Baquero, What is a resistance gene? Ranking risk in resistomes, Nat Rev Microbiol, vol.13, issue.2, pp.116-139, 2015.

O. Wurtzel, N. Sesto, J. R. Mellin, I. Karunker, S. Edelheit et al., Comparative transcriptomics of pathogenic and non-pathogenic Listeria species, Mol Syst Biol, vol.8, p.3377988, 2012.
DOI : 10.1038/msb.2012.11

URL : http://msb.embopress.org/content/8/1/583.full.pdf

S. Agarwalla, J. T. Kealey, D. V. Santi, and R. M. Stroud, Characterization of the 23 S ribosomal RNA m5U1939 methyltransferase from Escherichia coli, J Biol Chem, vol.277, issue.11, p.11779873, 2002.

S. Douthwaite, D. Fourmy, and S. Yoshizawa, Nucleotide methylations in rRNA that confer resistance to ribosome-targeting antibiotics, pp.285-307, 2005.
DOI : 10.1007/b105586

URL : https://hal.archives-ouvertes.fr/hal-00013974

V. Stojkovic, L. Noda-garcia, D. S. Tawfik, and D. G. Fujimori, Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme, Nucleic Acids Res, vol.44, issue.18, p.5062987, 2016.

D. N. Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat Rev Microbiol, vol.12, issue.1, pp.35-48, 2014.

C. Persaud, Y. Lu, A. Vila-sanjurjo, J. L. Campbell, J. Finley et al., Mutagenesis of the modified bases, m(5)U1939 and psi2504, in Escherichia coli 23S rRNA, Biochem Biophys Res Commun, vol.392, issue.2, pp.223-230, 2010.

S. S. Pao, I. T. Paulsen, M. H. Saier, and . Major, Microbiol Mol Biol Rev, vol.62, issue.1, p.98904, 1998.

A. Castaneda-garcia, J. Blazquez, and A. Rodriguez-rojas, Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance, Antibiotics (Basel), vol.2, issue.2, p.4790336, 2013.

S. Ermolaeva, S. Novella, Y. Vega, M. T. Ripio, M. Scortti et al., Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor, Mol Microbiol, vol.52, issue.2, p.15066044, 2004.

M. T. Ripio, G. Dominguez-bernal, M. Lara, M. Suarez, and J. A. Vazquez-boland, A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes, J Bacteriol, vol.179, issue.5, pp.1533-1573, 1997.

P. Central and P. , , p.178863

S. S. Chatterjee, H. Hossain, S. Otten, C. Kuenne, K. Kuchmina et al., Intracellular gene expression profile of Listeria monocytogenes, Infect Immun, vol.74, issue.2, p.1360297, 2006.
DOI : 10.1128/iai.74.2.1323-1338.2006

URL : http://europepmc.org/articles/pmc1360297?pdf=render

A. Toledo-arana, O. Dussurget, G. Nikitas, N. Sesto, H. Guet-revillet et al., The Listeria transcriptional landscape from saprophytism to virulence, Nature, vol.459, issue.7249, pp.950-956, 2009.
DOI : 10.1038/nature08080

URL : https://hal.archives-ouvertes.fr/hal-01901828

A. De-las-heras, R. J. Cain, M. K. Bielecka, and J. A. Vazquez-boland, Regulation of Listeria virulence: PrfA master and commander, Curr Opin Microbiol, vol.14, issue.2, p.21388862, 2011.

L. M. Shetron-rama, H. Marquis, H. G. Bouwer, and N. E. Freitag, Intracellular induction of Listeria monocytogenes actA expression, Infect Immun, vol.70, issue.3, p.127770, 2002.
DOI : 10.1128/iai.70.3.1087-1096.2002

URL : https://iai.asm.org/content/70/3/1087.full.pdf

, Fosfomycin: Rationale for the clinical breakpoints v, European Committee on Antimicrobial Susceptibility Testing, 2013.

A. B. De-la-hoz, S. Ayora, I. Sitkiewicz, S. Fernandez, R. Pankiewicz et al., Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator, Proc Natl Acad Sci U S A, vol.97, issue.2, p.15398, 2000.

D. Skurnik, D. Roux, V. Cattoir, O. Danilchanka, X. Lu et al., Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing, Proc Natl Acad Sci U S A, vol.110, issue.51, p.3870709, 2013.

D. Roux, O. Danilchanka, T. Guillard, V. Cattoir, H. Aschard et al., Fitness cost of antibiotic susceptibility during bacterial infection, Sci Transl Med, vol.7, issue.297, p.26203082, 2015.
DOI : 10.1126/scitranslmed.aab1621

A. Beceiro, M. Tomas, and G. Bou, Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?, Clin Microbiol Rev, vol.26, issue.2, p.3623377, 2013.

T. Guillard, S. Pons, D. Roux, G. B. Pier, and D. Skurnik, Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy, Bioessays, vol.38, issue.7, p.27248008, 2016.
DOI : 10.1002/bies.201500180

M. Schroeder, B. D. Brooks, and A. E. Brooks, The complex relationship between virulence and antibiotic resistance, Genes (Basel), vol.8, issue.1, p.5295033, 2017.
DOI : 10.3390/genes8010039

URL : https://www.mdpi.com/2073-4425/8/1/39/pdf

M. S. Ramirez, G. M. Traglia, D. L. Lin, T. Tran, and M. E. Tolmasky, Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae paradigm, Microbiol Spectr, vol.2, issue.5, p.4335354, 2014.

J. L. Martinez and F. Baquero, Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance, Clin Microbiol Rev, vol.15, issue.4, p.126860, 2002.
DOI : 10.1128/cmr.15.4.647-679.2002

URL : https://cmr.asm.org/content/15/4/647.full.pdf

M. Alcalde-rico, H. , S. Blanco, P. Martinez, and J. L. , Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence, Front Microbiol, vol.7, p.5030252, 2016.

E. Padilla, E. Llobet, A. Domenech-sanchez, L. Martinez-martinez, J. A. Bengoechea et al., Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence, Antimicrob Agents Chemother, vol.54, issue.1, pp.177-83, 2010.
DOI : 10.1128/aac.00715-09

URL : https://aac.asm.org/content/54/1/177.full.pdf

P. Central and P. , , p.2798511

W. J. Gooderham and R. E. Hancock, Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa, FEMS Microbiol Rev, vol.33, issue.2, pp.279-94, 2009.

M. J. Gebhardt, L. A. Gallagher, R. K. Jacobson, E. A. Usacheva, L. R. Peterson et al., Joint transcriptional control of virulence and resistance to antibiotic and environmental stress in Acinetobacter baumannii, MBio, vol.6, issue.6, pp.1660-1675, 2015.

P. Central and P. , , p.4659468

D. Silva, G. J. Mendonça, and N. , Association between antimicrobial resistance and virulence in Escherichia coli, Virulence, vol.3, p.22286707, 2012.

K. Schaufler, T. Semmler, D. J. Pickard, M. De-toro, F. De-la-cruz et al., Carriage of extendedspectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages, Front Microbiol, vol.7, p.4794485, 2016.

L. Zhang, K. Levy, G. Trueba, W. Cevallos, J. Trostle et al., Effects of selection pressure and genetic association on the relationship between antibiotic resistance and virulence in Escherichia coli, Antimicrob Agents Chemother, vol.59, issue.11, p.4604409, 2015.

M. J. Skwark, N. J. Croucher, S. Puranen, C. Chewapreecha, M. Pesonen et al., Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis, PLoS Genet, vol.13, issue.2, p.28207813, 2017.

P. Central and P. , , p.5312804

P. C. Phillips, Epistasis-the essential role of gene interactions in the structure and evolution of genetic systems, Nat Rev Genet, vol.9, issue.11, p.2689140, 2008.

B. Lehner, Molecular mechanisms of epistasis within and between genes, Trends Genet, vol.27, issue.8, p.21684621, 2011.

S. Borrell and S. Gagneux, Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis, Clin Microbiol Infect, vol.17, issue.6, p.3122159, 2011.

F. Baquero, Epigenetics, epistasis and epidemics, Evol Med Public Health, vol.2013, issue.1, p.3868410, 2013.
DOI : 10.1093/emph/eot009

URL : https://academic.oup.com/emph/article-pdf/2013/1/86/11385119/eot009.pdf

T. Vogwill, M. Kojadinovic, and R. C. Maclean, Epistasis between antibiotic resistance mutations and genetic background shape the fitneess effect of resistance across species of Pseudomonas, Proc R Soc B, vol.283, p.20160151, 2016.

S. Trindade, A. Sousa, K. B. Xavier, F. Dionisio, M. G. Ferreira et al., Positive epistasis drives the acquisition of multidrug resistance, PLoS Genet, vol.5, issue.7, p.2706973, 2009.

A. Wong, Epistasis and the evolution of antimicrobial resistance, Front Microbiol, vol.8, p.5313483, 2017.

D. Hughes and D. I. Andersson, Environmental and genetic modulation of the phenotypic expression of antibiotic resistance, FEMS Microbiol Rev, vol.41, issue.3, p.5435765, 2017.

D. Van-de-beek, M. C. Brouwer, G. E. Thwaites, and A. R. Tunkel, Advances in treatment of bacterial meningitis, Lancet, vol.380, issue.9854, p.23141618, 2012.

O. Mitja, C. Pigrau, I. Ruiz, X. Vidal, B. Almirante et al., Predictors of mortality and impact of aminoglycosides on outcome in listeriosis in a retrospective cohort study, J Antimicrob Chemother, vol.64, issue.2, pp.416-439, 2009.

F. Allerberger and M. Wagner, Listeriosis: a resurgent foodborne infection, Clin Microbiol Infect, vol.16, issue.1, pp.16-23, 2009.
DOI : 10.1111/j.1469-0691.2009.03109.x

URL : https://doi.org/10.1111/j.1469-0691.2009.03109.x

K. S. Kaye, A. C. Gales, and G. Dubourg, Old antibiotics for multidrug-resistant pathogens: from in vitro activity to clinical outcomes, Int J Antimicrob Agents, vol.49, issue.5, p.28130072, 2017.
DOI : 10.1016/j.ijantimicag.2016.11.020

URL : https://hal.archives-ouvertes.fr/hal-01573798

E. Mylonakis, E. L. Hohmann, and S. B. Calderwood, Central nervous system infection with Listeria monocytogenes. 33 years' experience at a general hospital and review of 776 episodes from the literature. Medicine (Baltimore), vol.77, pp.313-349, 1998.

C. Siso, A. Gonce, J. Bosch, M. D. Salvia, S. Hernandez et al., Listeriosis in pregnancy: a secular trend in a tertiary referral hospital in Barcelona, Eur J Clin Microbiol Infect Dis, vol.31, issue.9, p.22327372, 2012.

A. S. Michalopoulos, I. G. Livaditis, and V. Gougoutas, The revival of fosfomycin, Int J Infect Dis, vol.15, issue.11, p.21945848, 2011.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J Mol Biol, vol.215, issue.3, p.2231712, 1990.
DOI : 10.1006/jmbi.1990.9999

K. A. Jolley and M. C. Maiden, BIGSdb: Scalable analysis of bacterial genome variation at the population level, BMC Bioinformatics, vol.11, p.21143983, 2010.

P. Central and P. , , p.3004885

M. Arnaud, A. Chastanet, and M. Debarbouille, New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria, Appl Environ Microbiol, vol.70, issue.11, p.525206, 2004.
DOI : 10.1128/aem.70.11.6887-6891.2004

URL : https://aem.asm.org/content/aem/70/11/6887.full.pdf

P. Lauer, M. Y. Chow, M. J. Loessner, D. A. Portnoy, and R. Calendar, Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors, J Bacteriol, vol.184, issue.15, p.135211, 2002.

M. D. Wuenscher, S. Kohler, W. Goebel, and T. Chakraborty, Gene disruption by plasmid integration in Listeria monocytogenes: insertional inactivation of the listeriolysin determinant lisA, Mol Gen Genet, vol.228, issue.1-2, pp.177-82, 1991.