R. Cantos, L. K. Cole, D. Acampora, A. Simeone, and D. K. Wu, Patterning of the mammalian cochlea, Proc Natl Acad Sci U S A, vol.97, issue.22, p.34339, 2000.

R. J. Ruben, Development of the inner ear of the mouse: a radioautographic study of terminal mitoses, Acta Otolaryngol, vol.220, 1967.

P. Chen and N. Segil, p27(Kip1) links cell proliferation to morphogenesis in the developing organ of Corti, Development, vol.126, issue.8, pp.1581-90, 1999.

P. Chen, J. E. Johnson, H. Y. Zoghbi, and N. Segil, The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination, Development, vol.129, issue.10, p.11973280, 2002.

J. Wang, S. Mark, X. Zhang, D. Qian, S. J. Yoo et al., Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway, Nat Genet, vol.37, issue.9, p.1413588, 2005.

A. E. Kiernan, A. L. Pelling, K. K. Leung, A. S. Tang, D. M. Bell et al., Sox2 is required for sensory organ development in the mammalian inner ear, Nature, vol.434, issue.7036, 2005.

N. A. Bermingham, B. A. Hassan, S. D. Price, M. A. Vollrath, N. Ben-arie et al., Math1: an essential gene for the generation of inner ear hair cells, Science, vol.284, issue.5421, pp.1837-1878, 1999.

A. Dabdoub, C. Puligilla, J. M. Jones, B. Fritzsch, K. S. Cheah et al., Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea, Proc Natl Acad Sci, vol.105, issue.47, p.2587543, 2008.

J. Neves, C. Parada, M. Chamizo, and F. Giraldez, Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification, Development, vol.138, issue.4, p.21266409, 2011.

J. Neves, M. Uchikawa, A. Bigas, and F. Giraldez, The prosensory function of Sox2 in the chicken inner ear relies on the direct regulation of Atoh1, PLoS One, vol.7, issue.1, p.3264626, 2012.

M. Ahmed, E. Y. Wong, J. Sun, J. Xu, F. Wang et al., Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2, Dev Cell, vol.22, issue.2, p.3285434, 2012.

W. Zheng, L. Huang, Z. B. Wei, D. Silvius, B. Tang et al., The role of Six1 in mammalian auditory system development, Development, vol.130, issue.17, pp.3989-4000, 2003.

H. Ozaki, K. Nakamura, J. Funahashi, K. Ikeda, G. Yamada et al., Six1 controls patterning of the mouse otic vesicle, Development, vol.131, issue.3, p.14695375, 2003.

E. A. Bosman, Q. E. Fuchs, H. , H. De-angelis, M. Steel et al., Catweasel mice: a novel role for Six1 in sensory patch development and a model for branchio-oto-renal syndrome, Dev Biol, vol.328, issue.2, p.2682643, 2009.

R. G. Ruf, P. X. Xu, D. Silvius, E. A. Otto, F. Beekmann et al., SIX1 mutations cause branchio-otorenal syndrome by disruption of EYA1-SIX1-DNA complexes, Proc Natl Acad Sci U S A, vol.101, issue.21, p.419562, 2004.

R. Konig, S. Fuchs, and C. Dukiet, Branchio-oto-renal (BOR) syndrome: variable expressivity in a five-generation pedigree, Eur J Pediatr, vol.153, issue.6, pp.446-50, 1994.

L. Grand, F. Grifone, R. Mourikis, P. Houbron, C. Gigaud et al., Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration, J Cell Biol, vol.198, issue.5, p.3432771, 2012.

J. Xu, E. Y. Wong, C. Cheng, J. Li, M. T. Sharkar et al., Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis, Dev Cell, vol.31, issue.4, p.4282136, 2014.

K. Arnold, A. Sarkar, M. A. Yram, J. M. Polo, R. Bronson et al., Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice, Cell Stem Cell, vol.9, issue.4, p.3538360, 2011.

J. Xu, H. Ueno, C. Y. Xu, B. Chen, I. L. Weissman et al., Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti, Nat Commun, vol.8, p.15046, 2017.

R. Gu, R. M. Brown, C. W. Hsu, T. Cai, A. L. Crowder et al., Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti, Dev Biol, vol.414, issue.1, p.4875846, 2016.

K. T. Chonko, I. Jahan, J. Stone, M. C. Wright, T. Fujiyama et al., Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear, Dev Biol, vol.381, issue.2, p.3772529, 2013.

A. E. Kiernan, J. Xu, and T. Gridley, The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear, PLoS Genet, vol.2, issue.1, p.1326221, 2006.

J. M. Jones, M. Montcouquiol, A. Dabdoub, C. Woods, and M. W. Kelley, Inhibitors of differentiation and DNA binding (Ids) regulate Math1 and hair cell formation during the development of the organ of Corti, J Neurosci, vol.26, issue.2, p.16407553, 2006.

B. E. Jacques, M. E. Montcouquiol, E. M. Layman, M. Lewandoski, and M. W. Kelley, Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea, Development, vol.134, issue.16, p.17634195, 2007.

C. Jones and P. Chen, Primary cilia in planar cell polarity regulation of the inner ear, Curr Top Dev Biol, vol.85, p.19147007, 2008.

C. P. Heisenberg and Y. Bellaiche, Forces in tissue morphogenesis and patterning, Cell, vol.153, issue.5, p.23706734, 2013.

M. F. Chacon-heszele, D. Ren, A. B. Reynolds, F. Chi, and P. Chen, Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin, Development, vol.139, issue.5, p.3274358, 2012.

J. Li, Y. Rodriguez, C. Cheng, L. Zeng, E. Y. Wong et al., EYA1's Conformation Specificity in Dephosphorylating Phosphothreonine in Myc and Its Activity on Myc Stabilization in Breast Cancer, Mol Cell Biol, vol.37, issue.1, p.5192086, 2017.

C. Puligilla and M. W. Kelley, Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function, Dev Neurobiol, p.27203669, 2016.

V. Munnamalai and D. M. Fekete, Notch-Wnt-Bmp crosstalk regulates radial patterning in the mouse cochlea in a spatiotemporal manner, Development, vol.143, issue.21, p.5117145, 2016.

H. Ozaki, Y. Watanabe, K. Takahashi, K. Kitamura, A. Tanaka et al., Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development, Mol Cell Biol, vol.21, issue.10, p.100256, 2001.

G. Schlosser, Induction and specification of cranial placodes, Dev Biol, vol.294, issue.2, p.16677629, 2006.

Y. Konishi, K. Ikeda, Y. Iwakura, and K. Kawakami, Six1 and Six4 promote survival of sensory neurons during early trigeminal gangliogenesis, Brain Res, vol.1116, issue.1, p.16938278, 2006.

Y. Suzuki, K. Ikeda, and K. Kawakami, Expression of Six1 and Six4 in mouse taste buds, J Mol Histol, vol.41, issue.4-5, p.20668922, 2010.

Z. Ando, S. Sato, K. Ikeda, and K. Kawakami, Slc12a2 is a direct target of two closely related homeobox proteins, Six1 and Six4, FEBS J, vol.272, issue.12, p.15955062, 2005.

D. Zou, D. Silvius, J. Davenport, R. Grifone, P. Maire et al., Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1, Dev Biol, vol.293, issue.2, p.16530750, 2006.

A. Streit, Extensive cell movements accompany formation of the otic placode, Dev Biol, vol.249, issue.2, pp.237-54, 2002.

R. Grifone, J. Demignon, C. Houbron, E. Souil, C. Niro et al., Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo, Development, vol.132, issue.9, p.15788460, 2005.

A. Visel, C. Thaller, and E. G. Genepaint, org: an atlas of gene expression patterns in the mouse embryo, Nucleic Acids Res, vol.32, p.308763, 2004.

B. E. Hoskins, C. H. Cramer, D. Silvius, D. Zou, R. M. Raymond et al., Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome, Am J Hum Genet, vol.80, issue.4, p.1852719, 2007.
DOI : 10.1086/513322

URL : https://doi.org/10.1086/513322

S. Abdelhak, V. Kalatzis, R. Heilig, S. Compain, D. Samson et al., A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family, Nat Genet, vol.15, issue.2, p.9020840, 1997.

S. Abdelhak, V. Kalatzis, R. Heilig, S. Compain, D. Samson et al., Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1, Hum Mol Genet, pp.2247-55, 1998.

K. Shim, G. Minowada, D. E. Coling, and G. R. Martin, Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling, Dev Cell, vol.8, issue.4, p.15809037, 2005.

R. Yousaf, Q. Meng, R. B. Hufnagel, Y. Xia, C. Puligilla et al., MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells, Dis Model Mech, vol.8, issue.12, p.4728323, 2015.

E. C. Oesterle, S. Campbell, R. R. Taylor, A. Forge, and C. R. Hume, Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear, J Assoc Res Otolaryngol, vol.9, issue.1, p.2536811, 2007.

M. C. Kelly, Q. Chang, A. Pan, X. Lin, and P. Chen, Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo, J Neurosci, vol.32, p.3477623, 2012.

E. Mckenzie, A. Krupin, and M. W. Kelley, Cellular growth and rearrangement during the development of the mammalian organ of Corti, Dev Dyn, vol.229, issue.4, p.15042704, 2004.

M. S. Steinberg, Differential adhesion in morphogenesis: a modern view, Curr Opin Genet Dev, vol.17, issue.4, p.17624758, 2007.

D. Zou, C. Erickson, E. H. Kim, J. D. Fritzsch, B. Xu et al., Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear, Hum Mol Genet, vol.17, issue.21, pp.3340-56, 2008.