T. Kobayashi and D. K. Cooper, Anti-Gal, alpha-Gal epitopes, and xenotransplantation, Subcell Biochem, vol.32, pp.229-257, 1999.
DOI : 10.1007/978-1-4615-4771-6_10

D. Bouhours, C. Pourcel, and J. E. Bouhours, Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Gal alpha 1-3Gal), blood group H determinant and N-glycolylneuraminic acid, Glycoconj J, vol.13, issue.6, pp.947-953, 1996.

L. Scobie, V. Padler-karavani, L. Bas-bernardet, and S. , Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts, J Immunol, vol.191, issue.6, pp.2907-2915, 1950.

A. Zhu and R. Hurst, Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum, Xenotransplantation, vol.9, issue.6, pp.376-381, 2002.

A. Salama, G. Evanno, J. Harb, and J. P. Soulillou, Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation, Xenotransplantation, vol.22, issue.2, pp.85-94, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02147779

A. J. Lutz, P. Li, and J. L. Estrada, Double knockout pigs deficient in N-glycolylneuraminic acid and Galactose ?-1,3-Galactose reduce the humoral barrier to xenotransplantation, Xenotransplantation, vol.20, issue.1, pp.27-35, 2013.

G. Chen, H. Qian, and T. Starzl, Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys, Nat Med, vol.11, issue.12, pp.1295-1298, 2005.

F. Naso, A. Gandaglia, and T. Bottio, First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses, Xenotransplantation, vol.20, issue.4, pp.252-261, 2013.

E. M. Reuven, L. Ben-arye, S. Marshanski, and T. , Characterization of immunogenic Neu5Gc in bioprosthetic heart valves, Xenotransplantation, vol.23, issue.5, pp.381-392, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02153354

F. Naso and A. Gandaglia, Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years, Xenotransplantation, vol.25, issue.1, 2018.

F. J. Schoen and R. J. Levy, Tissue heart valves: current challenges and future research perspectives, 25th Annual Meeting of the Society for Biomaterials, perspectives. Providence, RI, vol.47, pp.439-465, 1999.
DOI : 10.1002/(sici)1097-4636(19991215)47:4<439::aid-jbm1>3.3.co;2-f

C. S. Park, S. S. Park, S. Y. Choi, S. H. Yoon, W. H. Kim et al., Anti alpha-gal immune response following porcine bioprosthesis implantation in children, J Heart Valve Dis, vol.19, issue.1, pp.124-130, 2010.

A. Barone, J. Benktander, and C. Whiddon, Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts, Xenotransplantation, vol.25, issue.5, p.12406, 2018.

O. Bloch, P. Golde, P. M. Dohmen, S. Posner, W. Konertz et al., Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves, Tissue Eng Part A, vol.17, pp.2399-2405, 2011.

C. G. Mcgregor, A. Carpentier, N. Lila, J. S. Logan, and G. W. Byrne, Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves, J Thorac Cardiovasc Surg, vol.141, issue.1, pp.269-275, 2011.

C. G. Mcgregor, H. Kogelberg, M. Vlasin, and G. W. Byrne, Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves, J Heart Valve Dis, vol.22, issue.3, pp.383-390, 2013.

R. Zhang, Y. Wang, and L. Chen, Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/beta4GalNT2/CMAH, Acta Biomater, vol.72, pp.196-205, 2018.

J. W. Steinke, T. A. Platts-mills, and S. P. Commins, The alpha-gal story: lessons learned from connecting the dots, J Allergy Clin Immunol, vol.135, issue.3, pp.589-596, 2015.
DOI : 10.1016/j.jaci.2014.12.1947

URL : http://europepmc.org/articles/pmc4600073?pdf=render

D. Apostolovic, T. A. Tran, M. Starkhammar, S. Sanchez-vidaurre, C. Hamsten et al., The red meat allergy syndrome in Sweden, Allergo J Int, vol.25, issue.2, pp.49-54, 2016.

A. Kawanishi, K. Varki, and A. , Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid, Mol Aspects Med, vol.51, pp.16-30, 2016.

A. N. Samraj, O. M. Pearce, and H. Laubli, A red meat-derived glycan promotes inflammation and cancer progression, Proc Natl Acad Sci USA, vol.112, issue.2, pp.542-547, 2015.
DOI : 10.1073/pnas.1417508112

URL : http://www.pnas.org/content/112/2/542.full.pdf

M. Wang, Z. Sun, and T. Yu, Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows, Sci Rep, vol.7, issue.1, p.10733, 2017.

A. L. Parc, S. Karav, C. Rouquie, E. A. Maga, A. Bunyatratchata et al., Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows, PLoS ONE, vol.12, issue.2, p.171477, 2017.

A. Sano, H. Matsushita, and H. Wu, Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle, PLoS ONE, vol.8, issue.10, pp.78119-78119, 2013.

M. Buist, E. Komatsu, and P. Lopez, Features of N-Glycosylation of Immunoglobulins from Knockout Pig Models, J Anal Bioanal Tech, vol.7, p.5, 2016.

D. Ghaderi, M. Zhang, N. Hurtado-ziola, and A. Varki, Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation, Biotechnol Genet Eng Rev, vol.28, pp.147-175, 2012.
DOI : 10.5661/bger-28-147

W. Tan, D. F. Carlson, and C. A. Lancto, Efficient nonmeiotic allele introgression in livestock using custom endonucleases, Proc Natl Acad Sci, vol.110, issue.41, p.16526, 2013.

Y. Sendai, T. Sawada, and M. Urakawa, 3-Galactosyltransferase-Gene knockout in cattle using a single targeting vector with loxP sequences and cre-expressing adenovirus, Transplantation, vol.81, issue.5, pp.760-766, 2006.

M. Sato, K. Miyoshi, and Y. Nagao, The combinational use of CRISPR/ Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts, Xenotransplantation, vol.21, issue.3, pp.291-300, 2014.

L. Cong, F. A. Ran, and D. Cox, Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, issue.6121, pp.819-823, 2013.
DOI : 10.1126/science.1231143

URL : http://europepmc.org/articles/pmc3795411?pdf=render

S. Kim, D. Kim, S. W. Cho, J. Kim, and J. S. Kim, Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res, vol.24, issue.6, pp.1012-1019, 2014.

X. Liang, J. Potter, and S. Kumar, Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection, J Biotechnol, vol.208, pp.44-53, 2015.
DOI : 10.1016/j.jbiotec.2015.04.024

URL : https://doi.org/10.1016/j.jbiotec.2015.04.024

T. Fujimura, Y. Takahagi, and T. Shigehisa, Production of alpha 1,3-galactosyltransferase gene-deficient pigs by somatic cell nuclear transfer: a novel selection method for gal alpha 1,3-Gal antigen-deficient cells, Mol Reprod Develop, vol.75, issue.9, pp.1372-1378, 2008.

J. Hauschild, B. Petersen, and Y. Santiago, Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases, Proc Natl Acad Sci USA, vol.108, issue.29, pp.12013-12017, 2011.

B. A. Tucker, M. Rahimtula, and K. M. Mearow, A procedure for selecting and culturing subpopulations of neurons from rat dorsal root ganglia using magnetic beads, Brain Res Brain Res Protoc, vol.16, issue.1-3, pp.50-57, 2005.

C. Galli, I. Lagutina, I. Vassiliev, R. Duchi, and G. Lazzari, Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle, Cloning Stem Cells, vol.4, issue.3, pp.189-196, 2002.

H. R. Tervit, D. G. Whittingham, and L. E. Rowson, Successful culture in vitro of sheep and cattle ova, J Reprod Fertil, vol.30, issue.3, pp.493-497, 1972.

P. Li, J. L. Estrada, and C. Burlak, Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection, Xenotransplantation, vol.22, issue.1, pp.20-31, 2015.

S. Fo-r-m-ati-o-n, Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Perota A, Lagutina I, Duchi R, et al. Generation of cattle knockout for galactose-?1,3-galactose and N-glycolylneuraminic acid antigens, Xenotransplantation, 2019.