D. E. Christofferson and J. Yuan, Necroptosis as an alternative form of programmed cell death, Curr Opin Cell Biol, vol.22, issue.2, 2010.

L. Galluzzi, O. Kepp, S. Krautwald, G. Kroemer, and A. Linkermann, Molecular mechanisms of regulated necrosis, Semin Cell Dev Biol, p.24582829, 2014.
DOI : 10.1016/j.semcdb.2014.02.006

A. Linkermann, D. R. Green, and . Necroptosis, N Engl J Med, vol.370, issue.5, 2014.

T. Vanden-berghe, A. Linkermann, S. Jouan-lanhouet, H. Walczak, and P. Vandenabeele, Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nat Rev Mol Cell Biol, vol.15, issue.2, 2014.

U. Cevik, I. Dalkara, and T. , Intravenously administered propidium iodide labels necrotic cells in the intact mouse brain after injury, Cell Death Differ, vol.10, issue.8, p.12868000, 2003.

B. Grasl-kraupp, B. Ruttkay-nedecky, H. Koudelka, K. Bukowska, W. Bursch et al., In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note, Hepatology, vol.21, issue.5, pp.1465-1473, 1995.

K. White, E. Arama, and J. M. Hardwick, Controlling caspase activity in life and death, PLoS Genet, vol.13, issue.2, p.28207784, 2017.
DOI : 10.1371/journal.pgen.1006545

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006545&type=printable

C. M. Henry and S. J. Martin, Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Proinflammatory "FADDosome" Complex upon TRAIL Stimulation, Mol Cell, vol.65, issue.4, p.28212752, 2017.

K. Kaya, H. E. Ditzel, M. Meier, P. Bergmann, and A. , An inhibitory mono-ubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways, PLoS Genet, vol.13, issue.2, p.28207763, 2017.

K. T. Bieging, S. S. Mello, and L. D. Attardi, Unravelling mechanisms of p53-mediated tumour suppression, Nat Rev Cancer, vol.14, issue.5, p.24739573, 2014.

A. Wylie, W. J. Lu, D. Brot, A. Buszczak, M. Abrams et al., p53 activity is selectively licensed in the Drosophila stem cell compartment, Elife, vol.3, p.24618896, 2014.

B. Mollereau and D. Ma, The p53 control of apoptosis and proliferation: lessons from Drosophila, Apoptosis, vol.19, issue.10, p.25217223, 2014.
URL : https://hal.archives-ouvertes.fr/ensl-01074645

K. Yacobi-sharon, Y. Namdar, and E. Arama, Alternative Germ Cell Death Pathway in Drosophila Involves HtrA2/Omi, Lysosomes, and a Caspase-9 Counterpart, Dev Cell, vol.25, issue.1, p.23523076, 2013.

J. R. Huh, S. Y. Vernooy, H. Yu, N. Yan, Y. Shi et al., Multiple apoptotic caspase cascades are required in nonapoptotic roles for Drosophila spermatid individualization, PLoS Biol, vol.2, issue.1, p.14737191, 2004.
DOI : 10.1371/journal.pbio.0020015

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.0020015&type=printable

E. Arama, M. Bader, M. Srivastava, A. Bergmann, and H. Steller, The two Drosophila cytochrome C proteins can function in both respiration and caspase activation, Embo J, vol.25, issue.1, p.16362035, 2006.
DOI : 10.1038/sj.emboj.7600920

URL : http://emboj.embopress.org/content/25/1/232.full.pdf

T. L. Beumer, H. L. Roepers-gajadien, I. S. Gademan, P. P. Van-buul, G. Gil-gomez et al., The role of the tumor suppressor p53 in spermatogenesis, Cell Death Differ, vol.5, issue.8, p.10200522, 1999.

I. Rodriguez, C. Ody, K. Araki, I. Garcia, and P. Vassalli, An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis, Embo J, vol.16, issue.9, p.9171341, 1997.

D. J. Allan, B. V. Harmon, and J. Kerr, In: Potten CS Cell death in spermatogenesis, Perspectives on Mammalian Cell Death, pp.229-258, 1987.

M. Pasparakis and P. Vandenabeele, Necroptosis and its role in inflammation, Nature, vol.517, issue.7534, 2015.
DOI : 10.1038/nature14191

J. Montero, C. Dutta, D. Van-bodegom, D. Weinstock, and A. Letai, p53 regulates a non-apoptotic death induced by ROS, Cell Death Differ, vol.20, issue.11, p.23703322, 2013.
DOI : 10.1038/cdd.2013.52

URL : https://www.nature.com/articles/cdd201352.pdf

H. C. Tu, D. Ren, G. X. Wang, D. Y. Chen, T. D. Westergard et al., The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage, Proc Natl Acad Sci, vol.106, issue.4, 2009.
DOI : 10.1073/pnas.0808173106

URL : http://www.pnas.org/content/106/4/1093.full.pdf

A. V. Vaseva, N. D. Marchenko, J. K. Tsirka, S. E. Holzmann, S. Moll et al., p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis, Cell, vol.149, issue.7, p.22726440, 2012.
DOI : 10.1016/j.cell.2012.05.014

URL : https://doi.org/10.1016/j.cell.2012.05.014

Z. Wang, H. Jiang, S. Chen, F. Du, and X. Wang, The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways, Cell, vol.148, issue.1-2, p.22265414, 2012.

, Spermatogenesis in Drosophila. Cold Spring Harbor, 1993.

E. L. Matunis, R. R. Stine, and M. De-cuevas, Recent advances in Drosophila male germline stem cell biology, Spermatogenesis, vol.2, issue.3, p.23087833, 2012.
DOI : 10.4161/spmg.21763

URL : http://europepmc.org/articles/pmc3469437?pdf=render

A. C. Monk, H. E. Abud, and G. R. Hime, Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster, Cell Tissue Res, vol.350, issue.2, p.22961348, 2012.

D. R. Green and G. Kroemer, Cytoplasmic functions of the tumour suppressor p53, Nature, vol.458, issue.7242, pp.1127-1157, 2009.

W. J. Lu, J. Chapo, I. Roig, and J. M. Abrams, Meiotic recombination provokes functional activation of the p53 regulatory network, Science, vol.328, issue.5983, p.20522776, 2010.

V. Marcel, M. L. Dichtel-danjoy, C. Sagne, H. Hafsi, D. Ma et al., Biological functions of p53 isoforms through evolution: lessons from animal and cellular models, Cell Death Differ, vol.18, issue.12, p.21941372, 2011.
URL : https://hal.archives-ouvertes.fr/ensl-00814713

M. L. Dichtel-danjoy, D. Ma, P. Dourlen, G. Chatelain, F. Napoletano et al., Drosophila p53 isoforms differentially regulate apoptosis and apoptosis-induced proliferation, Cell Death Differ, vol.20, issue.1, p.22898807, 2012.
DOI : 10.1038/cdd.2012.100

URL : https://hal.archives-ouvertes.fr/ensl-00961404

B. Zhang, M. Rotelli, M. Dixon, and B. R. Calvi, The function of Drosophila p53 isoforms in apoptosis, Cell Death Differ, vol.22, issue.12, p.25882045, 2015.

Y. Pang, X. C. Bai, C. Yan, Q. Hao, Z. Chen et al., Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from Drosophila, Genes & development, vol.29, issue.3, p.25644603, 2015.

P. Meier, J. Silke, S. J. Leevers, and G. I. Evan, The Drosophila caspase DRONC is regulated by DIAP1, Embo J, vol.19, issue.4, p.10675329, 2000.
DOI : 10.1093/emboj/19.4.598

URL : http://emboj.embopress.org/content/19/4/598.full.pdf

K. Kuida, T. S. Zheng, S. Na, C. Kuan, D. Yang et al., Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature, vol.384, issue.6607, pp.368-72, 1996.

C. Peterson, G. E. Carney, B. J. Taylor, and K. White, reaper is required for neuroblast apoptosis during Drosophila development, Development, vol.129, issue.6, p.11880355, 2002.

P. Gonczy, E. Matunis, and S. Dinardo, bag-of-marbles and benign gonial cell neoplasm act in the germline to restrict proliferation during Drosophila spermatogenesis, Development, vol.124, issue.21, pp.4361-71, 1997.

S. Inoue, R. Tomasini, A. Rufini, A. J. Elia, M. Agostini et al., TAp73 is required for spermatogenesis and the maintenance of male fertility, Proc Natl Acad Sci, p.24449892, 2014.

L. Holembowski, D. Kramer, D. Riedel, R. Sordella, A. Nemajerova et al., TAp73 is essential for germ cell adhesion and maturation in testis, J Cell Biol, vol.204, issue.7, p.24662569, 2014.

B. T. Wakimoto, D. L. Lindsley, and C. Herrera, Toward a comprehensive genetic analysis of male fertility in Drosophila melanogaster, Genetics, vol.167, issue.1, p.15166148, 2004.

E. Arama, J. Agapite, and H. Steller, Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila, Dev Cell, vol.4, issue.5, p.12737804, 2003.
DOI : 10.1016/s1534-5807(03)00120-5

URL : https://doi.org/10.1016/s1534-5807(03)00120-5

W. Hu, Z. Feng, A. K. Teresky, and A. J. Levine, p53 regulates maternal reproduction through LIF, Nature, vol.450, issue.7170, 2007.
DOI : 10.1038/nature05993

A. Nakai, M. Suzuki, and M. Tanabe, Arrest of spermatogenesis in mice expressing an active heat shock transcription factor 1, EMBO J, vol.19, issue.7, p.10747023, 2000.

M. H. Brinkworth, G. F. Weinbauer, S. Schlatt, and E. Nieschlag, Identification of male germ cells undergoing apoptosis in adult rats, Journal of reproduction and fertility, vol.105, issue.1, pp.25-33, 1995.

L. Galluzzi, J. M. Bravo-san-pedro, and G. Kroemer, Ferroptosis in p53-dependent oncosuppression and organismal homeostasis, Cell Death Differ, vol.22, issue.8, p.26143748, 2015.

D. V. Krysko, T. Vanden-berghe, D. 'herde, K. Vandenabeele, and P. , Apoptosis and necrosis: detection, discrimination and phagocytosis, Methods, vol.44, issue.3, p.18314051, 2008.
DOI : 10.1016/j.ymeth.2007.12.001

D. V. Krysko, T. Vanden-berghe, E. Parthoens, D. 'herde, K. Vandenabeele et al., Methods for distinguishing apoptotic from necrotic cells and measuring their clearance, Methods Enzymol, vol.442, p.18662577, 2008.
DOI : 10.1016/s0076-6879(08)01416-x

J. Karch and J. D. Molkentin, Regulated necrotic cell death: the passive aggressive side of Bax and Bak, Circ Res, vol.116, issue.11, p.25999420, 2015.

L. Jiang, N. Kon, T. Li, S. J. Wang, T. Su et al., Ferroptosis as a p53-mediated activity during tumour suppression, Nature, vol.520, issue.7545, p.25799988, 2015.
DOI : 10.1038/nature14344

URL : http://europepmc.org/articles/pmc4455927?pdf=render

L. H. Einhorn, Curing metastatic testicular cancer, Proc Natl Acad Sci U S A, vol.99, issue.7, p.11904381, 2002.
DOI : 10.1073/pnas.072067999

URL : http://www.pnas.org/content/99/7/4592.full.pdf

M. Gutekunst, M. Oren, A. Weilbacher, M. A. Dengler, C. Markwardt et al., p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin, PLoS One, vol.6, issue.4, p.21532991, 2011.

Y. Wang, W. Gao, X. Shi, J. Ding, W. Liu et al., Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin, Nature, vol.547, issue.7661, pp.99-103, 2017.
DOI : 10.1038/nature22393

Y. Ouyang, C. Petritsch, H. Wen, J. L. Jan, Y. N. Lu et al., Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila, Development, vol.138, issue.11, p.21558368, 2011.
DOI : 10.1242/dev.058347

URL : http://dev.biologists.org/content/138/11/2185.full.pdf

E. R. Geisbrecht and D. J. Montell, A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration, Cell, vol.118, issue.1, p.15242648, 2004.

C. J. Hawkins, S. J. Yoo, E. P. Peterson, S. L. Wang, S. Y. Vernooy et al., The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM, J Biol Chem, vol.275, issue.35, p.10825159, 2000.
DOI : 10.1074/jbc.m000869200

URL : http://www.jbc.org/content/early/2000/05/23/jbc.M000869200.full.pdf

L. M. Quinn, L. Dorstyn, K. Mills, P. A. Colussi, P. Chen et al., An essential role for the caspase dronc in developmentally programmed cell death in Drosophila, J Biol Chem, vol.275, issue.51, p.10984473, 2000.

D. Xu, Y. Li, M. Arcaro, M. Lackey, and A. Bergmann, The CARD-carrying caspase Dronc is essential for most, but not all, developmental cell death in Drosophila, Development, vol.132, issue.9, p.15800001, 2005.

T. J. Daish, K. Mills, and S. Kumar, Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis, Dev Cell, vol.7, issue.6, p.15572132, 2004.
DOI : 10.1016/j.devcel.2004.09.018

URL : https://doi.org/10.1016/j.devcel.2004.09.018

S. Sperandio, I. De-belle, and D. E. Bredesen, An alternative, nonapoptotic form of programmed cell death, Proc Natl Acad Sci U S A, vol.97, issue.26, p.11121041, 2000.

S. Hasan, P. Hetie, and E. L. Matunis, Niche signaling promotes stem cell survival in the Drosophila testis via the JAK-STAT target DIAP1, Epub 05/06, vol.404, p.25941003, 2015.

H. Yang and Y. M. Yamashita, The regulated elimination of transit-amplifying cells preserves tissue homeostasis during protein starvation in Drosophila testis, Development, vol.142, issue.10, p.25968311, 2015.

Y. S. Rong, S. W. Titen, H. B. Xie, M. M. Golic, M. Bastiani et al., Targeted mutagenesis by homologous recombination in D. melanogaster, Genes Dev, vol.16, issue.12, p.12080094, 2002.
DOI : 10.1101/gad.986602

URL : http://genesdev.cshlp.org/content/16/12/1568.full.pdf

J. H. Lee, E. Lee, J. Park, E. Kim, J. Kim et al., In vivo p53 function is indispensable for DNA damageinduced apoptotic signaling in Drosophila, FEBS Lett, vol.550, issue.1-3, 2003.

F. Leulier, P. S. Ribeiro, E. Palmer, T. Tenev, K. Takahashi et al., Systematic in vivo RNAi analysis of putative components of the Drosophila cell death machinery, Cell Death Differ, p.16485033, 2006.

A. Rappailles, M. Decoville, and D. Locker, DSP1, a Drosophila HMG protein, is involved in spatiotemporal expression of the homoeotic gene Sex combs reduced, Biol Cell, vol.97, issue.10, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00088668

M. Querenet, V. Goubard, G. Chatelain, N. Davoust, and B. Mollereau, Spen is required for pigment cell survival during pupal development in Drosophila, Dev Biol, vol.402, issue.2, p.25872184, 2015.

T. Jacks, R. L. Williams, B. O. Schmitt, E. M. Halachmi, S. Bronson et al., Tumor spectrum analysis in p53-mutant mice, Curr Biol, vol.4, issue.1, 1994.
DOI : 10.1016/s0960-9822(00)00002-6

A. E. , Arrested apoptosis without nuclear fragmentation produced by efferent duct ligation in round spermatids and multinucleated giant cells of rat testis, Reproduction, vol.125, issue.6, pp.879-87, 2003.