F. Berditchevski and E. Odintsova, Tetraspanins as regulators of protein trafficking, Traffic, vol.8, pp.89-96, 2007.

C. M. Termini and J. M. Gillette, Tetraspanins function as regulators of cellular signaling, Front Cell Dev Biol, vol.5, p.34, 2017.

C. Boucheix, G. H. Duc, C. Jasmin, and E. Rubinstein, Tetraspanins and malignancy. Expert Rev Mol Med, pp.1-17, 2001.

S. Levy and T. Shoham, The tetraspanin web modulates immune-signalling complexes, Nat Rev Immunol, vol.5, pp.136-148, 2005.
DOI : 10.1038/nri1548

L. Seipold and P. Saftig, The emerging role of tetraspanins in the proteolytic processing of the amyloid precursor protein, Front Mol Neurosci, vol.9, p.149, 2016.

M. Hadjiargyrou and P. H. Patterson, An anti-CD9 monoclonal antibody promotes adhesion and induces proliferation of Schwann cells in vitro, J Neurosci, vol.15, pp.574-83, 1995.

D. Powner, P. M. Kopp, S. J. Monkley, D. R. Critchley, and F. Berditchevski, Tetraspanin CD9 in cell migration, Biochem Soc Trans, vol.39, pp.563-570, 2011.
DOI : 10.1042/bst0390563

L. Naour, F. Rubinstein, E. Jasmin, C. Prenant, M. Boucheix et al., Severely reduced female fertility in CD9-deficient mice, Science, vol.287, pp.319-340, 2000.

D. Clay, E. Rubinstein, Z. Mishal, A. Anjo, M. Prenant et al., CD9 and megakaryocyte differentiation, Blood, vol.97, pp.1982-1991, 2001.
DOI : 10.1182/blood.v97.7.1982

URL : http://www.bloodjournal.org/content/97/7/1982.full.pdf

K. Oritani, X. Wu, K. Medina, J. Hudson, K. Miyake et al., Antibody ligation of CD9 modifies production of myeloid cells in long-term cultures, Blood, vol.87, pp.2252-61, 1996.

K. Aoyama, K. Oritani, T. Yokota, J. Ishikawa, T. Nishiura et al., Stromal cell CD9 regulates differentiation of hematopoietic stem/progenitor cells, Blood, vol.93, pp.2586-94, 1999.

J. C. Qi, J. Wang, S. Mandadi, K. Tanaka, B. D. Roufogalis et al., Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor, Blood, vol.107, pp.135-142, 2006.

F. A. Redegeld, Y. Yu, S. Kumari, N. Charles, and U. Blank, Non-IgE mediated mast cell activation, Immunol Rev, vol.282, pp.87-113, 2018.
DOI : 10.1111/imr.12629

I. Hálová, L. Dráberová, M. Bambousková, M. Machyna, L. Stegurová et al., Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis, J Biol Chem, vol.288, pp.9801-9815, 2013.

A. Higginbottom, I. Wilkinson, B. Mccullough, F. Lanza, D. O. Azorsa et al., Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells, Immunology, vol.99, pp.546-52, 2000.

E. Fernvik, G. Halldén, J. Hed, and J. Lundahl, Intracellular and surface distribution of CD9 in human eosinophils, APMIS, vol.103, pp.699-706, 1995.

J. T. Kim, G. J. Gleich, and H. Kita, Roles of CD9 molecules in survival and activation of human eosinophils, J Immunol, vol.159, pp.926-933, 1997.

P. Akuthota, R. Melo, L. A. Spencer, and P. F. Weller, MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains
DOI : 10.1165/rcmb.2010-0335oc

URL : http://europepmc.org/articles/pmc3297164?pdf=render

, Am J Respir Cell Mol Biol, vol.46, pp.188-95, 2012.

C. Bandeira-melo, S. Perez, R. Melo, I. Ghiran, and P. F. Weller, EliCell assay for the detection of released cytokines from eosinophils, J Immunol Methods, vol.276, pp.227-237, 2003.

R. Qi, Y. Ozaki, K. Kuroda, N. Asazuma, Y. Yatomi et al., Differential activation of human platelets induced by Fc gamma receptor II cross-linking and by anti-CD9 monoclonal antibody, J Immunol, vol.157, pp.5638-5683, 1996.

M. Suzuki, I. Tachibana, Y. Takeda, P. He, S. Minami et al., Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation, J Immunol, vol.182, pp.6485-93, 2009.
DOI : 10.4049/jimmunol.0802797

URL : http://www.jimmunol.org/content/182/10/6485.full.pdf

K. Kaji, S. Takeshita, K. Miyake, T. Takai, and A. Kudo, Functional association of CD9 with the Fc gamma receptors in macrophages, J Immunol, vol.166, pp.3256-65, 2001.

C. T. Ha, R. Waterhouse, J. Wessells, J. A. Wu, and G. S. Dveksler, Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1, J Leukoc Biol, vol.77, pp.948-57, 2005.

W. Huang, M. Febbraio, and R. L. Silverstein, CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein, PLoS ONE, vol.6, 2011.

M. Zilber, N. Setterblad, T. Vasselon, C. Doliger, D. Charron et al., MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes, Blood, vol.106, pp.3074-81, 2005.

V. Rocha-perugini, J. M. González-granado, E. Tejera, S. López-martín, M. Yañez-mó et al., Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling, Eur J Immunol, vol.44, pp.1967-75, 2014.

G. Horváth, V. Serru, D. Clay, M. Billard, C. Boucheix et al., CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82, J Biol Chem, vol.273, pp.30537-30580, 1998.

A. R. Shaw, A. Domanska, A. Mak, A. Gilchrist, K. Dobler et al., Ectopic expression of human and feline CD9 in a human B cell line confers beta 1 integrin-dependent motility on fibronectin and laminin substrates and enhanced tyrosine phosphorylation, J Biol Chem, vol.270, pp.24092-24101, 1995.

S. Yoon, I. Y. Lee, X. Zhang, M. C. Zapata, and Y. S. Choi, CD9 may contribute to the survival of human germinal center B cells by facilitating the interaction with follicular dendritic cells, FEBS Open Biol, vol.4, pp.370-376, 2014.

A. B. Van-spriel, Tetraspanins in the humoral immune response, Biochem Soc Trans, vol.39, pp.512-519, 2011.

M. Kabuto, N. Fujimoto, T. Takahashi, and T. Tanaka, Decreased level of interleukin-10-producing B cells in patients with pemphigus but not in patients with pemphigoid, Br J Dermatol, vol.176, pp.1204-1216, 2017.

X. G. Tai, K. Toyooka, Y. Yashiro, A. R. Park, C. S. Hamaoka et al., CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis, J Immunol, vol.159, pp.3799-807, 1997.

A. Serra, S. Nuti, S. Tavarini, C. Sammicheli, D. Rosa et al., Coligation of the hepatitis C virus receptor CD81 with CD28 primes naive T lymphocytes to acquire type 2 effector function, J Immunol, vol.181, pp.174-85, 2008.

H. Kobayashi, O. Hosono, S. Iwata, H. Kawasaki, M. Kuwana et al., The tetraspanin CD9 is preferentially expressed on the human CD4(+)CD45RA+ naive T cell population and is involved in T cell activation, Clin Exp Immunol, vol.137, pp.101-109, 2004.

W. Li and J. F. Tait, Regulatory effect of CD9 on calcium-stimulated phosphatidylserine exposure in Jurkat T lymphocytes, Arch Biochem Biophys, vol.351, pp.89-95, 1998.

S. Nourshargh, P. L. Hordijk, and M. Sixt, Breaching multiple barriers: leukocyte motility through venular walls and the interstitium, Nat Rev Mol Cell Biol, vol.11, pp.366-78, 2010.
DOI : 10.1038/nrm2889

R. L. Bailey, J. M. Herbert, K. Khan, V. L. Heath, R. Bicknell et al., The emerging role of tetraspanin microdomains on endothelial cells, Biochem Soc Trans, vol.39, pp.1667-73, 2011.

J. H. Kersey, T. W. Lebien, C. S. Abramson, R. Newman, R. Sutherland et al., P-24: a human leukemia-associated and lymphohemopoietic progenitor cell surface structure identified with monoclonal antibody, J Exp Med, vol.153, pp.726-731, 1981.
DOI : 10.1084/jem.153.3.726

URL : http://jem.rupress.org/content/153/3/726.full.pdf

X. G. Tai, Y. Yashiro, R. Abe, K. Toyooka, C. R. Wood et al., A role for CD9 molecules in T cell activation, J Exp Med, vol.184, pp.753-758, 1996.

M. Miyake, M. Koyama, M. Seno, and S. Ikeyama, Identification of the motilityrelated protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility, J Exp Med, vol.174, pp.1347-54, 1991.

R. Waterhouse, C. Ha, and G. S. Dveksler, Murine CD9 is the receptor for pregnancy-specific glycoprotein 17, J Exp Med, vol.195, pp.277-282, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01651703

M. S. Chen, K. S. Tung, S. A. Coonrod, Y. Takahashi, D. Bigler et al., Role of the integrin-associated protein CD9 in binding between sperm ADAM 2 and the egg integrin alpha6beta1: implications for murine fertilization, Proc Natl Acad Sci, vol.96, pp.11830-11835, 1999.

N. Inoue, D. Hamada, H. Kamikubo, K. Hirata, M. Kataoka et al., Molecular dissection of IZUMO1, a sperm protein essential for sperm-egg fusion, Development, vol.140, pp.3221-3230, 2013.

A. Jégou, A. Ziyyat, V. Barraud-lange, E. Perez, J. P. Wolf et al., CD9 tetraspanin generates fusion competent sites on the egg membrane for mammalian fertilization, Proc Natl Acad Sci, vol.108, pp.10946-51, 2011.

G. Rappa, T. M. Green, J. Karbanová, D. Corbeil, and A. Lorico, Tetraspanin CD9 determines invasiveness and tumorigenicity of human breast cancer cells, Oncotarget, vol.6, pp.7970-91, 2015.

N. Sumiyoshi, H. Ishitobi, S. Miyaki, K. Miyado, N. Adachi et al., The role of tetraspanin CD9 in osteoarthritis using three different mouse models, Biomed Res, vol.37, pp.283-291, 2016.

Y. Takeda, M. Suzuki, Y. Jin, and I. Tachibana, Preventive Role of Tetraspanin CD9 in Systemic Inflammation of Chronic Obstructive Pulmonary Disease, Am J Respir Cell Mol Biol, vol.53, pp.751-60, 2015.

I. Halova and P. Draber, Tetraspanins and transmembrane adaptor proteins as plasma membrane organizers-mast cell case, Front Cell Dev Biol, vol.4, p.43, 2016.
DOI : 10.3389/fcell.2016.00043

URL : https://www.frontiersin.org/articles/10.3389/fcell.2016.00043/pdf

E. Tippett, P. U. Cameron, M. Marsh, and S. M. Crowe, Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection, J Leukoc Biol, vol.93, pp.913-933, 2013.

X. Wang, G. F. Evans, M. L. Alfaro, and S. H. Zuckerman, Down-regulation of macrophage CD9 expression by interferon-gamma, Biochem Biophys Res Commun, vol.290, pp.891-898, 2002.

W. M. Peng, C. F. Yu, W. Kolanus, A. Mazzocca, T. Bieber et al., Tetraspanins CD9 and CD81 are molecular partners of trimeric Fc?RI on human antigen-presenting cells, Allergy, vol.66, pp.605-616, 2011.

A. E. Morelli, A. T. Larregina, W. J. Shufesky, M. Sullivan, D. B. Stolz et al., Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells, Blood, vol.104, pp.3257-66, 2004.

S. Yoon, X. Zhang, I. Y. Lee, N. Spencer, P. Vo et al., CD9 is a novel marker for plasma cell precursors in human germinal centers, Biochem Biophys Res Commun, vol.431, pp.41-47, 2013.

W. Won and J. F. Kearney, CD9 is a unique marker for marginal zone B cells, B1 cells, and plasma cells in mice, J Immunol, vol.168, pp.5605-5611, 2002.

A. Cariappa, T. Shoham, H. Liu, S. Levy, C. Boucheix et al., The CD9 tetraspanin is not required for the development of peripheral B cells or for humoral immunity, J Immunol, vol.175, pp.2925-2955, 2005.

. Wolf, . Sd, B. N. Dittel, F. Hardardottir, and C. A. Janeway, Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice, J Exp Med, vol.184, pp.2271-2279, 1996.

C. Mauri and M. Menon, The expanding family of regulatory B cells, Int Immunol, vol.27, pp.479-86, 2015.

S. Fillatreau, C. H. Sweenie, M. J. Mcgeachy, D. Gray, and S. M. Anderton, B cells regulate autoimmunity by provision of IL-10, Nat Immunol, vol.3, pp.944-950, 2002.

F. Braza, J. Chesne, M. Durand, S. Dirou, C. Brosseau et al., A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation, Allergy, vol.70, pp.1421-1452, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01830988

J. Sun, J. Wang, E. Pefanis, J. Chao, G. Rothschild et al., Transcriptomics Identify CD9 as a marker of murine IL-10-competent regulatory B cells, Cell Rep, vol.13, pp.1110-1117, 2015.

S. S. Said, G. T. Barut, N. Mansur, A. Korkmaz, and A. Sayi-yazgan, Bacterially activated B-cells drive T cell differentiation towards Tr1 through PD-1/PD-L1 expression, Mol Immunol, vol.96, pp.48-60, 2018.
DOI : 10.1016/j.molimm.2018.02.010

T. Matsushita, L. Huu, D. Kobayashi, T. Hamaguchi, Y. Hasegawa et al., A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase-Akt pathway activation, J Allergy Clin Immunol, vol.138, pp.1170-82, 2016.

K. Toyo-oka, Y. Yashiro-ohtani, C. S. Park, X. G. Tai, K. Miyake et al., Association of a tetraspanin CD9 with CD5 on the T cell surface: role of particular transmembrane domains in the association, Int Immunol, vol.11, pp.2043-52, 1999.

O. Barreiro, M. Yáñez-mó, M. Sala-valdés, M. D. Gutiérrez-lópez, S. Ovalle et al., Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation, Blood, vol.105, pp.2852-61, 2005.
DOI : 10.1182/blood-2004-09-3606

URL : http://www.bloodjournal.org/content/105/7/2852.full.pdf

K. Singethan, N. Müller, S. Schubert, D. Lüttge, D. N. Krementsov et al., CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion, Traffic, vol.9, pp.924-959, 2008.

M. Thali, Tetraspanin functions during HIV-1 and influenza virus replication, Biochem Soc Trans, vol.39, pp.529-560, 2011.
DOI : 10.1042/bst0390529

URL : http://europepmc.org/articles/pmc4067976?pdf=render

M. Gordón-alonso, M. Yañez-mó, O. Barreiro, S. Alvarez, M. A. Muñoz-fernández et al., Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion, J Immunol, vol.177, pp.5129-5137, 2006.

M. Symeonides, M. Lambelé, N. H. Roy, and M. Thali, Evidence showing that tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage, Viruses, vol.6, pp.1078-90, 2014.

J. T. Earnest, M. P. Hantak, J. Park, and T. Gallagher, Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains, J Virol, vol.89, pp.6093-104, 2015.

C. Kurzeder, B. Koppold, G. Sauer, S. Pabst, R. Kreienberg et al., CD9 promotes adeno-associated virus type 2 infection of mammary carcinoma cells with low cell surface expression of heparan sulphate proteoglycans, Int J Mol Med, vol.19, pp.325-333, 2007.

S. Zhang, K. Kodys, G. J. Babcock, and G. Szabo, CD81/CD9 tetraspanins aid plasmacytoid dendritic cells in recognition of hepatitis C virus-infected cells and induction of interferon-alpha, Hepatology, vol.58, pp.940-949, 2013.

M. Ostrowski, M. Vermeulen, O. Zabal, P. I. Zamorano, A. M. Sadir et al., The early protective thymus-independent antibody response to footand-mouth disease virus is mediated by splenic CD9+ B lymphocytes, J Virol, vol.81, pp.9357-67, 2007.

L. R. Green, P. N. Monk, L. J. Partridge, P. Morris, A. R. Gorringe et al., Cooperative role for tetraspanins in adhesin-mediated attachment of bacterial species to human epithelial cells, Infect Immun, vol.79, pp.2241-2250, 2011.

G. J. Schenk, S. Dijkstra, A. J. Van-het-hof, S. Van-der-pol, J. Drexhage et al., Roles for HB-EGF and CD9 in multiple sclerosis, Glia, vol.61, pp.1890-905, 2013.

H. Wang, Q. Li, C. Sharma, K. Knoblich, and M. E. Hemler, Tetraspanin protein contributions to cancer, Biochem Soc Trans, vol.39, pp.547-52, 2011.
DOI : 10.1042/bst0390547

P. Liang, M. Miao, Z. Liu, H. Wang, W. Jiang et al., CD9 expression indicates a poor outcome in acute lymphoblastic leukemia, Cancer Biomark, vol.21, pp.781-787, 2018.

M. Zöller, Tetraspanins: push and pull in suppressing and promoting metastasis, Nat Rev Cancer, vol.9, pp.40-55, 2009.

J. Caradec, G. Kharmate, E. Hosseini-beheshti, H. Adomat, M. Gleave et al., Reproducibility and efficiency of serum-derived exosome extraction methods, Clin Biochem, vol.47, pp.1286-92, 2014.

Y. H. Soung, S. Ford, V. Zhang, and J. Chung, Exosomes in Cancer Diagnostics, Cancers, vol.9, p.8, 2017.

H. J. Kwon, S. Y. Min, M. J. Park, C. Lee, J. H. Park et al., Expression of CD9 and CD82 in clear cell renal cell carcinoma and its clinical significance, Pathol Res Pract, vol.210, pp.285-90, 2014.

J. M. Garner, M. J. Herr, K. B. Hodges, and L. K. Jennings, The utility of tetraspanin CD9 as a biomarker for metastatic clear cell renal cell carcinoma, Biochem Biophys Res Commun, vol.471, pp.21-25, 2016.

J. Huan, Y. Gao, J. Xu, W. Sheng, W. Zhu et al., Overexpression of CD9 correlates with tumor stage and lymph node metastasis in esophageal squamous cell carcinoma, Int J Clin Exp Pathol, vol.8, pp.3054-61, 2015.

V. J. Amatya, Y. Takeshima, K. Aoe, N. Fujimoto, T. Okamoto et al., CD9 expression as a favorable prognostic marker for patients with malignant mesothelioma, Oncol Rep, vol.29, pp.21-29, 2013.

N. Podergajs, H. Motaln, U. Raj?evi?, U. Verbov?ek, M. Kor?i? et al., Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells, Oncotarget, vol.7, pp.593-609, 2016.

D. Kumar, D. Gupta, S. Shankar, and R. K. Srivastava, Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer, Oncotarget, vol.6, pp.3280-91, 2015.

Y. Murayama, K. Oritani, and S. Tsutsui, Novel CD9-targeted therapies in gastric cancer, World J Gastroenterol, vol.21, pp.3206-3219, 2015.
DOI : 10.3748/wjg.v21.i11.3206

URL : https://doi.org/10.3748/wjg.v21.i11.3206

T. Nakamoto, Y. Murayama, K. Oritani, C. Boucheix, E. Rubinstein et al., A novel therapeutic strategy with anti-CD9 antibody in gastric cancers, J Gastroenterol, vol.44, pp.889-96, 2009.
DOI : 10.1007/s00535-009-0081-3

J. Q. Wu, W. B. Dyer, J. Chrisp, L. Belov, B. Wang et al., Longitudinal microarray analysis of cell surface antigens on peripheral blood mononuclear cells from HIV+ individuals on highly active antiretroviral therapy, Retrovirology, vol.5, p.24, 2008.

B. Descours, G. Petitjean, J. López-zaragoza, T. Bruel, R. Raffel et al., CD32a is a marker of a CD4 T-cell HIV reservoir harbouring replicationcompetent proviruses, Nature, vol.543, pp.564-571, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01503531

S. Kraft, T. Fleming, J. M. Billingsley, S. Lin, M. Jouvin et al., Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo, J Exp Med, vol.201, pp.385-96, 2005.

A. Francis, E. Bosio, S. F. Stone, D. M. Fatovich, G. Arendts et al., Neutrophil activation during acute human anaphylaxis: analysis of MPO and sCD62L, Clin Exp Allergy, vol.47, pp.361-70, 2017.

F. Braza, J. Chesne, S. Castagnet, A. Magnan, and S. Brouard, Regulatory functions of B cells in allergic diseases, Allergy, vol.69, pp.1454-63, 2014.

J. Dong, C. K. Wong, Z. Cai, D. Jiao, M. Chu et al., Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells, Allergy, vol.70, pp.921-953, 2015.

P. A. Blair, K. A. Chavez-rueda, J. G. Evans, M. J. Shlomchik, A. Eddaoudi et al., Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice, J Immunol, vol.182, pp.3492-502, 2009.

G. Korczak-kowalska, A. Stelmaszczyk-emmel, K. Bocian, E. Kiernozek, N. Drela et al., Expanding diversity and common goal of regulatory T and B cells. II: in allergy, malignancy, and transplantation, Arch Immunol Ther Exp, vol.65, pp.523-558, 2017.

Y. Jin, I. Tachibana, Y. Takeda, P. He, S. Kang et al., Statins decrease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages, PLoS ONE, vol.8, 2013.

B. Tebbe, B. Wilde, Z. Ye, J. Wang, X. Wang et al., Renal transplant recipients treated with calcineurin-inhibitors lack circulating immature transitional CD19+CD24hiCD38hi regulatory b-lymphocytes, PLoS ONE, vol.11, 2016.

B. H. Chung, K. W. Kim, J. H. Yu, B. Kim, B. S. Choi et al., Decrease of immature B cell and interleukin-10 during early-post-transplant period in renal transplant recipients under tacrolimus based immunosuppression, Transpl Immunol, vol.30, pp.159-67, 2014.

J. K. Ventress, L. J. Partridge, R. C. Read, D. Cozens, S. Macneil et al., Peptides from tetraspanin CD9 are potent inhibitors of Staphylococcus aureus adherence to keratinocytes, PLoS ONE, vol.11, 2016.