A. Choulika, A. Perrin, B. Dujon, and J. F. Nicolas, Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae, Mol. Cell. Biol, vol.15, pp.1968-1973, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02012603

P. Rouet, F. Smih, and M. Jasin, Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells, Proc. Natl Acad. Sci. USA, vol.91, pp.6064-6068, 1994.

L. Cong, Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.
DOI : 10.1126/science.1231143

URL : http://europepmc.org/articles/pmc3795411?pdf=render

Y. Doyon, Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat. Biotechnol, vol.26, pp.702-708, 2008.

P. Huang, Heritable gene targeting in zebrafish using customized TALENs, Nat. Biotechnol, vol.29, pp.699-700, 2011.

P. Mali, CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering, Nat. Biotechnol, vol.31, pp.833-838, 2013.

F. D. Urnov, Highly efficient endogenous human gene correction using designed zinc-finger nucleases, Nature, vol.435, pp.646-651, 2005.
DOI : 10.1038/nature03556

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.
DOI : 10.1126/science.1225829

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286148

D. Yang, Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases, Sci. Rep, vol.6, p.21264, 2016.

K. J. Beumer, Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases, Proc. Natl Acad. Sci. USA, vol.105, pp.19821-19826, 2008.

T. Gutschner, M. Haemmerle, G. Genovese, G. F. Draetta, and L. Chin, Posttranslational regulation of Cas9 during G1 enhances homology-directed repair, Cell Rep, vol.14, pp.1555-1566, 2016.

S. E. Howden, A Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells, Stem Cell Rep, vol.7, pp.508-517, 2016.

R. Anand, L. Ranjha, E. Cannavo, and P. Cejka, Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection, Mol. Cell, vol.64, pp.940-950, 2016.

F. Polato, CtIP-mediated resection is essential for viability and can operate independently of BRCA1, J. Exp. Med, vol.211, pp.1027-1036, 2014.

A. A. Sartori, Human CtIP promotes DNA end resection, Nature, vol.450, pp.509-514, 2007.
DOI : 10.1038/nature06337

URL : http://europepmc.org/articles/pmc2409435?pdf=render

L. S. Symington, Mechanism and regulation of DNA end resection in eukaryotes, Crit. Rev. Biochem. Mol. Biol, vol.51, pp.195-212, 2016.

A. Dumay, Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation, Oncogene, vol.25, pp.3196-3205, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00089781

R. C. Dekelver, Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome, Genome Res, vol.20, pp.1133-1142, 2010.

O. R. Davies, CtIP tetramer assembly is required for DNA-end resection and repair, Nat. Struct. Mol. Biol, vol.22, pp.150-157, 2015.
DOI : 10.1038/nsmb.2937

URL : http://europepmc.org/articles/pmc4564947?pdf=render

H. Wang, The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair, PLoS Genet, vol.9, p.1003277, 2013.

M. Van-overbeek, DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks, Mol. Cell, vol.63, pp.633-646, 2016.

D. Gómez-cabello, C. Checa-rodríguez, M. Abad, M. Serrano, and P. Huertas, CtIP-specific roles during cell reprogramming have long-term consequences in the survival and fitness of induced pluripotent stem cells, Stem Cell Rep, vol.8, pp.432-445, 2017.

K. Tilgner, A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors, Cell Death Differ, vol.20, pp.1089-1100, 2013.

E. A. Boyle, High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding, Proc. Natl Acad. Sci. USA, vol.114, pp.5461-5466, 2017.

A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, and D. R. Liu, Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage, Nature, vol.533, pp.420-424, 2016.

L. Lin, Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells, J. Biotechnol, vol.247, pp.42-49, 2017.

M. Gandía, S. Xu, C. Font, and J. F. Marcos, Disruption of ku70 involved in non-homologous end-joining facilitates homologous recombination but increases temperature sensitivity in the phytopathogenic fungus Penicillium digitatum, Fungal Biol, vol.120, pp.317-323, 2016.

Y. S. Dagdas, J. S. Chen, S. H. Sternberg, J. A. Doudna, and A. Yildiz, A conformational checkpoint between DNA binding and cleavage by CRISPRCas9, Sci. Adv, vol.3, p.27, 2017.
DOI : 10.1126/sciadv.aao0027

URL : http://advances.sciencemag.org/content/advances/3/8/eaao0027.full.pdf

A. Orthwein, A mechanism for the suppression of homologous recombination in G1 cells, Nature, vol.528, pp.422-426, 2015.

X. Lian, Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/?-catenin signaling under fully defined conditions, Nat. Protoc, vol.8, pp.162-175, 2013.
DOI : 10.1038/nprot.2012.150

URL : http://europepmc.org/articles/pmc3612968?pdf=render

A. Dumay, Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation, Oncogene, vol.25, pp.3196-3205, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00089781

Y. Saintigny, K. Makienko, C. Swanson, M. J. Emond, and R. J. Monnat, Homologous recombination resolution defect in Werner syndrome, Mol. Cell. Biol, vol.22, pp.6971-6978, 2002.
DOI : 10.1128/mcb.22.20.6971-6978.2002

URL : https://hal.archives-ouvertes.fr/cea-01938137

J. Renaud, Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases, Cell Rep, vol.14, pp.2263-2272, 2016.
DOI : 10.1016/j.celrep.2016.02.018

URL : https://hal.archives-ouvertes.fr/hal-01371505

S. Ménoret, Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins, Sci. Rep, vol.5, p.14410, 2015.

V. Chenouard, A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis, J. Genet. Genomics, vol.43, pp.341-348, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150677

D. Savic, CETCh-seq: CRISPR epitope tagging ChIP-seq of DNAbinding proteins, Genome Res, vol.25, pp.1581-1589, 2015.