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Objective: Dendritic cells (DCs) are critical effectors of innate and adaptive immunity 
playing crucial roles in autoimmune responses. We previously showed that blood DC 
numbers were reduced in autoimmune antineutrophil cytoplasmic autoantibody-associ-
ated vasculitis (AAV). Here, we assessed toll-like receptor (TLR) responsiveness of blood 
DCs from patients with granulomatosis with polyangiitis (GPA) or microscopic polyangiitis 
(MPA).

Methods: Blood samples from healthy controls (HCs), GPA, or MPA patients, without 
treatment, during acute phase (AP) or remission phase (RP) were analyzed. Cytokine 
production by DCs and T cells was assessed on whole blood by �ow cytometry after 
TLRs or polyclonal stimulation, respectively.

Results: We �rst showed that GPA and MPA are associated with a decreased blood 
DC number during AP. Conventional DCs (cDCs) from patients with GPA and MPA in 
AP exhibited a profound decrease of IL-12/IL-23p40 production after TLR3, 4, or 7/8 
stimulation compared to patients in remission and HC, with a return to normal values in 
RP. TNF� secretion was also affected, with a decrease in cDCs from GPA patients in AP 
after TLR3 stimulation but an increase after TLR7/8 stimulation. By contrast, the respon-
siveness of plasmacytoid DCs to TLR7 and 9 was only marginally affected. Finally, we 
observed that IFN�-producing CD4+ T cell frequency was signi�cantly lower in AP-GPA 
patients than in HC.

Conclusion: We describe, for the �rst time, a dysregulated response to TLRs of circu-
lating DCs in AAV patients mostly affecting cDCs that exhibit an unexpected reduced 
in�ammatory cytokine secretion possibly contributing to an altered Th cell response.

Keywords: ANCA-associated vasculitis, dendritic cells, toll-like receptor, IL-12/IL-23p40, dysregulation
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INTRODUCTION

Antineutrophil cytoplasmic autoantibody (ANCA)-associated 
vasculitis (AAV) are chronic and systemic autoimmune diseases 
characterized by small vessels in�ammation and necrosis that 
can involve many organs and tissues (lungs, kidneys, heart, 
gut, nervous system, skin, etc.). Vascular in�ammation, pres-
ence or absence of granulomatosis and/or asthma, and ANCA 
speci�city currently help to de�ne three disease entities, namely, 
granulomatosis with polyangiitis (GPA), microscopic polyangii-
tis (MPA), and eosinophilic granulomatosis with polyangiitis 
(EGPA) (1–3). �e disease severity is evaluated and followed 
using the Birmingham Vasculitis Activity Score (BVAS) that takes 
into account the damage of the di�erent organs a�ected by the 
disease (4). Classi�cation and diagnostic of vasculitis are in fact 
complicated due to heterogeneous nature of these diseases, which 
comprise a wide range of clinical signs. ANCA are identi�ed by 
indirect immuno�uorescence on �xed neutrophils smears and are 
mandatory for the diagnosis. ANCA are mostly directed to two 
neutrophil granule proteins, proteinase 3 (PR3) and myeloper-
oxidase (MPO). �eir speci�city is important in clinical practice 
as PR3-ANCA and MPO-ANCA are strongly associated with 
GPA and MPA, respectively, whereas the association with EGPA 
is much less clear (3, 5, 6). Actually, recent studies led several 
authors to propose to primarily classify AAV based on ANCA 
speci�city rather than clinical features (7–9). GWAS studies have 
shown a strongest association of genetic polymorphisms with 
ANCA speci�city rather than with the clinical de�nition of GPA 
vs MPA (10, 11). Geographical disparities have also been found 
with PR3-AAV being more prevalent in northwestern Europe and 
North America, while MPO-AAV is more prevalent in southern 
Europe, Asia, and the Paci�c, possibly due to genetic and environ-
mental factors (8). In fact, this association also extends to some 
clinical (9) and biological (12, 13) parameters.

Pathogenic mechanisms in AAV are not clearly elucidated, 
but extensive evidence argues for a deleterious role of ANCA 
as e�ectors of tissue damage (5). ANCA induce vasculitis by 
activating circulating primed neutrophils and causing them to 
penetrate and damage vessel walls by undergoing respiratory 
burst, degranulation, NETosis, apoptosis, or necrosis. Moreover, 
ANCA-activated neutrophils also release factors that activate the 
complement and contribute to in�ammation (14). Interestingly, 
it has been shown that whereas both MPO-ANCA and PR3-
ANCA can bind and be internalized by endothelial cells, they 
actually exert di�erent e�ects: PR3 inducing apoptosis, whereas 
MPO inducing production of intracellular reactive oxygen 
species (12). Mechanisms leading to autoimmune response 
induction and maintenance in AAV are, on the other hand, 
poorly understood but could be favored by decreased immu-
noregulatory mechanisms involving regulatory T and/or B cells 
(15–19). More recently, Millet et� al. suggested another defect 
in immunoregulatory mechanisms in GPA by showing that 
the presence of PR3 on the membrane of apoptotic neutrophils 
impeded the immunosuppressive e�ect of apoptotic cell e�ero-
cytosis and promoted sustained in�ammation (20). �e presence 
of phosphatidylserine-associated PR3 on apoptotic cells gener-
ated a proin�ammatory microenvironment, which facilitates the 

di�erentiation of �2/�9 and �1 CD4 + T cells through the 
interaction between plasmacytoid dendritic cells (pDCs) and 
naive T cells (20). �e potential role of pathogenic � subsets 
in AAV has mostly been studied on GPA and is actually far 
from clear. Indeed, previous studies have shown an increased 
frequency of circulating �1 (21–23), whereas others reported 
decreased �1 cells in GPA (24). An increased frequency of �2 
cells in blood (24) and nasal tissues (25) was reported in GPA. 
Another report showed, by contrast, large numbers of IFNg+ but 
not IL-4+ cells in nasal tissues in GPA (26). More recently, CD4+ 
T cells from GPA patients were also found to exhibit a skewed 
distribution of �9 (20). In addition, we recently reported an 
important decrease in circulating mucosal-associated invariant 
T (MAIT) cells in AAV patient that persisted during remission 
suggesting a role for these innate-like lymphocytes in AAV (27).

Dendritic cells (DCs) are key antigen-presenting cells to 
naïve T cells that play critical roles to initiate and control adap-
tive immune responses (28, 29). DCs are heterogeneous and 
comprise two major populations, conventional DCs (cDCs) 
and pDCs. DC subsets di�er in terms of cytokine production, 
T cell stimulation, and in� vivo localization (28–31). DCs are 
activated through sensing exogenous or endogenous ligands 
that bind pattern recognition receptors, such as toll-like recep-
tors (TLRs), whose expression pattern also di�ers among DC 
subsets. Following TLR activation, DCs upregulate costimula-
tory molecules expression and produce in�ammatory cytokines 
that play crucial roles in T cell polarization (32), cDCs being 
major producers of IL-12 and pDCs major producers of type 1 
IFN (33, 34).

We previously reported that blood cDCs and pDCs were 
strongly decreased in AAV patients during �ares. �is might be 
related to increased apoptosis of DCs due to systemic in�amma-
tion as it was recently shown for pDCs in a mouse model (35), or 
their recruitment in tissues (17). Supporting this latter hypothesis, 
we observed an increased expression of the adhesion molecule 
CD62L on cDCs and even more pronounced on pDCs from 
AAV patients as compared to DC from healthy controls (HCs) 
or AAV in remission (17). Very few studies actually analyzed the 
presence of DCs in AAV lesions. One study showed that CD208+ 
and CD209+ cells (presumably cDCs) clustered with T cells in 
renal biopsies of AAV patients (36), and another one identi�ed 
DC-LAMP-expressing cells in GPA-granuloma in nasal biopsies 
(37). A very recent report identi�ed IFN�-producing pDCs 
in close proximity to macrophages and apoptotic neutrophils 
within lung granuloma lesions in GPA patients (20). Based on 
these �ndings, we hypothesized that circulating DCs could have 
a semi-activated state in AAV patients and be a source of in�am-
matory cytokines. We therefore analyzed TLR-induced cytokine 
production by blood DCs from AAV patients using a whole 
blood (WB) assay and observed that circulating cDCs from GPA 
and MPA actually displayed a mostly reduced IL-12/IL-23p40 
production in response to several TLR ligands, whereas the 
production of type I IFN by pDCs was preserved overall. Given 
the central role of DC in polarizing T cells, we also assessed on 
the same blood samples T cell subsets frequencies and cytokine 
production and found a decreased frequency of IFN�-producing 
CD4+ T cells.
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TABLE 1 | Patients’ clinical and biological features at inclusion.

Characteristics GPA (N�=�25) MPA (N�=�14) HC (N�=�14)

Acute Remission Acute Remission

n 15 10 9 5 14
Mean age (range) 58 (23–82) 59 (35–74) 67 (41–84) 65 (54–81) 49 (31–84)
M/F 8/7 4/6 5/4 2/3 7/7
ANCA anti MPO/PR3 4/11 0/10 9/0 5/0 ND
BVAS mean (range) 13 (3–23) 0 12 (6–19) 0 ND
CRP mean (range) (mg/l) 93 (3–267) 4 (1–10) 86 (20–200) 7 (0–28) ND
Kidney injury 8/15 4/10 5/9 3/5 ND
Creatinine level median (range) (�M) 83 (41–444) 70 (47–140) 195.5 (28–420) 96 (65–788) ND
Last treatment before stop AZA: 2 AZA: 5 AZA: 0 AZA: 3

MMF: 1 MMF: 1 MMF: 0 MMF: 0
MTX: 2 MTX: 1 MTX: 0 MTX: 0
RTX: 0 RTX: 3 RTX: 0 RTX: 0
Cs: 0 Cs: 0 Cs: 1 Cs: 1

CYC: 0 CYC: 0 CYC: 1 CYC: 0
None: 10 None: 0 None: 7 None: 1

Duration of the disease at inclusion (range) (months) 42.4 (0–141) 93.1 (50–188) 35.6 (0–135) 64 (0–67)
Relapse/presentation 5/10 2/9

ND, not determined; AZA, azathioprine; MMF, mycophenolate mofetil; MTX, methotrexate; RTX, rituximab; Cs, corticosteroids; CYC, cyclophosphamide; GPA, granulomatosis with 
polyangiitis; MPA, microscopic polyangiitis; HC, healthy control; ANCA, antineutrophil cytoplasmic autoantibody; BVAS, Birmingham Vasculitis Activity Score.
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MATERIALS AND METHODS

Patients
Fourteen HCs and 39 age- and sex-matched patients with AAV, 
comprising 25 GPA and 14 MPA, were included in this study 
(Table�1). Acute phase (AP) of AAV was de�ned by a BVAS >3 
and remission by a BVAS�=�0 (Table�1), according to EULAR 
activity criteria (38). AP patients were treatment free at time 
of blood sampling. Patients with �ares or in remission had no 
immunosuppressive drugs for more than 3�months (1 patient) 
or more than 6�months (19 patients). HCs comprised 14 donors 
recruited either by the local Blood Bank (EFS Pays de la Loire) 
or our institution, who were 31–84�years old. Venous blood sam-
ples were collected in EDTA and heparin tubes and processed 
for analysis within 4� h. �e study was approved by our local 
ethical committee (Comité de Protection des Personnes Ouest 
IV—Nantes), and all patients and HCs provided written informed 
consent.

WB In�Vitro Stimulation Assays
Dendritic Cells
Within a maximum of 4�h after drawing, 100�µl of heparin-
ized WB samples were incubated 4�h with the following TLR 
ligands: heat-killed Listeria monocytogenes (HKLM, TLR2-L, 
108 HKLM/ml), Poly(I:C) (TLR3-L, 100� µg/ml), CL097 
(imidazoquinoline compound, TLR7/8-L, 2�µg/ml) and CPG 
ODN2395 [Type C CPG oligonucleotide, TLR9-L, 50�µM, all 
obtained from Invivogen (Toulouse, France)], or lipopoly-
saccharides (from Escherichia coli O26:B6, TLR4-L, 0.1� µg/
ml) purchased from Sigma-Aldrich (St. Louis, MI, USA). 
GolgiPlug (BD Biosciences, Le Pont de Claix) was added 
during the last 3�h of incubation to inhibit cellular cytokine 
release. Incubation in medium alone served as a negative 
control condition.

T Cells
Within maximum of 4�h a�er drawing, 50-µl heparinized WB 
samples were incubated with PMA (phorbol 12-myristate 
13-acetate) and ionomycin both purchased from Sigma-Aldrich 
(St. Louis, MI, USA) and at 20�ng/ml and 1�µg/ml, respectively. 
GolgiStop (BD Biosciences) was added during the last 3�h of incu-
bation to inhibit cellular cytokine release. Incubation in medium 
alone served as a negative control condition.

Flow Cytometry
Dendritic Cells
Dendritic cells were characterized using the six-color �ow cytom-
etry assay as we described previously (17). Brie�y, 100�µl of WB 
were incubated with the following antibodies: CD45-V500, line-
age cocktail1-FITC, HLA-DR-APC-Cy7, CD123-PECy5, all from 
BD Biosciences and CD11c-PECy7 (Beckman Coulter, Marseille, 
France). Absolute numbers of DCs were determined using BD 
Trucount™ Tubes (BD Biosciences). Samples were analyzed using 
a BD FacsCanto II analyzer with DIVA so�ware (BD Biosciences, 
Le Pont de Claix, France). �e whole tube was acquired to ensure 
a minimum of 1,000 events in the Lin�  HLA-DR+ (total DCs) gate 
for each sample.

T Cell Subsets
Absolute counts of CD4 and CD8 T cells were determined 
with BD Multitest™ CD3/CD8/CD45/CD4 in BD Trucount™ 
Tubes. Naïve/memory T cell subsets were identi�ed on WB 
using CD45-V500, CD3-V421, CD4-PECy5.5, CD8-APC-H7, 
CD45RA-PECy7, CCR7-PE (BD Biosciences), and with CXCR3-
FITC, CCR6-APC (Ozyme, St. Quentin-en-Yvelines, France).

Intracellular Cytokine Staining in DCs
Following WB stimulation with TLR ligands, surface staining 
was �rst performed with CD45-V500, Lineage cocktail1-FITC, 
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FIGURE 1 | Decreased number of dendritic cells (DCs) in 
granulomatosis with polyangiitis (GP A) and microscopic polyangiitis 
(MPA). Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) were 
enumerated by �ow cytometry on whole blood samples from patients with 
antineutrophil cytoplasmic autoantibody-associated vasculitis and healthy 
control [HC: n�=�14, GPA-acute phase (AP): n�=�15, GPA-remission phase 
(RP): n�=�10, MPA-AP: n�=�9, MPA-RP: n�=�5].
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HLA-DR-APC-Cy7, CD123-PECy5, and CD11c-PECy7 mAbs. 
Samples were then lysed, �xed, and permeabilized with Cyto�x/
Cytoperm Plus (BD Biosciences) and stained with the follow-
ing anti-cytokine mAbs TNF�-APC (BD Biosciences), IL-12/
IL-23p40-eFluor450 (eBiosciences, Paris, France), and IFN�-PE 
(MiltenyiBiotec, Paris, France). Samples were analyzed by �ow 
cytometry, and the frequencies of cytokine-producing cDC and 
pDC were assessed. �e whole tube was acquired to ensure a 
minimum of 1,000 events in the Lin�  HLA-DR+ (total DCs) gate 
for each sample.

Intracellular Cytokine Staining in T Cells
For cytokine production analysis by T cell subsets, surface 
staining was �rst performed with CD45-PERCP, CD3-FITC, 
and CD8-APC-H7 antibodies (BD Biosciences). Samples were 
then lysed, �xed, permeabilized, and then stained with IL-17A-
eFluor660 (eBiosciences), IFN�-V450, or IL-5-APC or IL-21-PE 
(BD Biosciences) antibodies. Samples were analyzed by �ow 
cytometry.

Statistics
Statistical analyses were performed using GraphPad prism 5.0 
so�ware (GraphPad So�ware, San Diego, CA, USA). Mean com-
parisons were performed with the non-parametric Kruskal–Wallis 
test and Dunn’s multiple test for post� hoc analysis. Di�erences 
were de�ned as statistically signi�cant when *p�<�0.05.

RESULTS

Decreased Number of DCs  
in Both GP A and MPA
We previously showed that patients with AAV displayed 
decreased numbers of circulating cDCs and pDCs during �ares 
and to a lesser extent in remission phase (RP) (17). Here, we 
aimed to reproduce these data in a new cohort and assess whether 
di�erences could exist between GPA and MPA. Absolute counts 
of cDCs were signi�cantly decreased in patients with GPA and 
MPA in AP compared to HCs (Figure�1, **p�<�0.01, *p�<�0.05, 
respectively). �ere was a trend to return to normal values in 
RP. A strong decrease of pDC absolute counts was also found in 
patients with active GPA and MPA (Figure�1, ***p�<�0.001), as 
well as in RP GPA (*p�<�0.05), but not in RP MPA despite a trend 
toward lower counts.

Altered Function of cDCs  
during AA V Flares
We then assessed intracellular cytokine production of blood 
DCs by �ow cytometry a�er stimulation by several TLR ligands 
with previous detailed method (39). We �rst investigated the 
production of the p40 chain which is shared by IL-12 and IL-23 
(Figure�2A), two cytokines playing a critical role in in�ammation 
and �1 and �17 CD4 + T cell polarization, respectively. In AP 
GPA, we observed a strong decrease of IL-12/IL-23p40 produc-
tion by cDCs in response to TLR3-L (***p�<�0.001) and more 
modestly to TLR4-L (**p�<�0.01) and TLR7/8-L (**p�<�0.01) as 
compared to HC, whereas no di�erence was detected for RP GPA. 

A similar pattern was observed in MPA, but signi�cance was 
only reached with TLR3 stimulation (***p�<�0.001). By contrast, 
cDCs from MPA in remission, but not GPA, exhibited an increase 
production of IL-12p40 upon TLR2 and TLR4 stimulation as 
compared to HC. As expected, TLR9 ligand did not induce IL-12 
production in cDCs.

Concordant with a general alteration cDC responsiveness 
in AP GPA patients, TNF� production was also decreased a�er 
TLR3 stimulation (Figure�2B) (HC: ***p�<�0.001), with a return 
to a normal level in RP (*p�<�0.05). �e same trend was observed 
for MPA patients without reaching signi�cance. By contrast, a�er 
stimulation with TLR7/8 ligand, cDCs from active GPA and RP 
MPA patients exhibited increased production of TNF� compared 
to HC (**p�<�0.01, *p�<�0.05). However, the production of TNF� 
a�er TLR2, 4, and 9 stimulations was not altered.

Production of IFN� by pDCs Is  
Preserved during Active AA V
We also investigated if pDC responsiveness from AAV patients 
was altered a�er TLR7/8 or TLR9 stimulation (Figure�3). A slight, 
but signi�cant, reduction of TNF� production was observed in 
pDCs from AP GPA patients a�er stimulation with the TLR7/8 
ligand (Figure�3A, **p�<� 0.01). We observed that pDCs from 
AAV patients displayed a normal response a�er TLR9 stimula-
tion in both phases of diseases and a normal IFN� production 
(Figure�3B). Low production of IL-12/IL-23p40 was observed in 
pDCs from HC that was further decreased in AP-MPA patients in 
response to TLR7/8 ligand (*p�<�0.05) and in AP-GPA a�er TLR9 
stimulation (**p�<�0.01) (Figure�3C).

Impaired IFN� Production in CD4 +  
T Cells during AP of GP A
Considering the decreased induction of IL-12/IL-23p40 in cDCs 
during AP, we hypothesized this could reverberate on �1/�2/
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FIGURE 3 | Slight decrease of cytokine production by plasmacytoid dendritic cells (pDCs) in active antineutrophil cytoplasmic autoantibody-
associated vasculitis. Whole blood samples were incubated with medium or toll-like receptor (TLR) 7/8 or 9 ligands for 3.5�h and then stained for identi�cation of 
pDCs (HLA-DR+, lin� , CD11c� , CD123+) together with intracellular cytokine production TNF� (A), IFN� (B), and IL-12/IL-23p40 (C). Healthy control (HC): n�=�14, 
granulomatosis with polyangiitis (GPA)-acute phase (AP): n�=�15, GPA remission phase (RP): n�=�10, microscopic polyangiitis (MPA)-AP: n�=�9, MPA-RP: n�=�5.

FIGURE 2 | Continued 
Altered production of IL-12/IL-23-p40 and TNF� in stimulated conventional dendritic cells (cCDs). Whole blood samples were incubated with medium or 
toll-like receptor (TLR) 2, 3, 4, 7/8, or 9 ligands for 3.5�h and then stained for identi�cation of cDCs (HLA-DR+, Lin� , CD11c+, CD123� ) together with intracellular 
cytokine production IL-12/IL-23p40 (A) and TNF� (B). Healthy control (HC): n�=�14, granulomatosis with polyangiitis (GPA)-acute phase (AP): n�=�15, GPA-remission 
phase (RP): n�=�10, microscopic polyangiitis (MPA)-AP: n�=�9, MPA-RP: n�=�5.
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�17 responses, and we analyzed cytokine production by T cells 
a�er polyclonal stimulation as well as % of T cell subsets in our 
cohort (Figure�4). Interestingly, frequencies of IFN�-producing 
CD4+, but not CD8+, T cells were signi�cantly reduced in AP 
GPA, but not MPA, as compared to HC (*p�<�0.05, Figure�4A). 

A tendency to increased frequencies of IL-17-producing CD4+ T 
cells was also observed in GPA only but without reaching statisti-
cal signi�cance (Figure�4B). No perturbation in IL-5 and IL-21 
production by CD4+ and CD8+ T cells was observed during AAV 
(data not shown).



FIGURE 4 | Continued
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FIGURE 4 | Continued 
Cytokine production and T cell subsets in antineutrophil cytoplasmic autoantibody-associated vasculitis. Intracellular production of IFN� (A) and IL-17 
(B) was assessed by �ow cytometry in whole blood (WB) in CD4+ and CD8+ T cells after PMA and ionomycin stimulation in healthy control (HC): n�=�10, 
granulomatosis with polyangiitis (GPA)-acute phase (AP): n�=�15, GPA-remission phase (RP): n�=�10, microscopic polyangiitis (MPA)-AP: n�=�9, MPA-RP: n�=�5. 
Frequencies of T cell subsets in WB using �ow cytometry (C,D). Gating strategy to identify naïve/memory T cell and Th subsets (C). T cell subsets in HC: n�=�7, 
GPA-AP: n�=�9, GPA-RP: n�=�9, MPA-AP: n�=�7, MPA-RP: n�=�2 (D). Results are expressed as percentage of positive cells.
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Frequencies of � subsets were also assessed using CXCR3 
and CCR6 expression that are useful surface markers for func-
tionally distinct memory T cell subsets: �17 (CXCR3� CCR6+), 
�2 (CXCR3 � CCR6� ), �1/�17 (CXCR3 +CCR6+), and �1 
(CXCR3+CCR6� ) (40, 41). �e gating strategy is depicted in 
Figure�4C. No di�erence was found in naïve (CD45RA+CCR7+) 
and TEMRA (CD45RA+CCR7� ) CD4+ and CD8+ T cells between 
all groups (Figure�4D). In CD4+ e�ector memory subsets, we 
found a signi�cant increase of CXCR3� CCR6�  (�2) T cells in AP 
MPA (*p�<�0.05). Central memory CD4+ T cells were increased in 
RP GPA but with no modi�cation of �1, �2, and �17 subsets 
frequencies. In the CD8 compartment, we observed an increase 
frequency of e�ector memory T cells (CD45RA� CCR7� ) in GPA 
patients as compared to HC (*p�<�0.05) and a similar trend in 
MPA, suggestive of increased CD8+ T cell activation in AAV.

DISCUSSION

Although ANCA play a central role in vascular lesions and 
in�ammation during AAV, the potential role of DCs in regulat-
ing autoimmune adaptive responses in these diseases is poorly 
understood. We �rst extended our previous �ndings of a decrease 
number of blood DC subsets during AAV (17) by showing that 
this holds true in both GPA and MPA. Given that DCs are major 
producers of cytokines regulating T-cell activation, we sought 
to determine whether the capacity of blood DCs to produce 
cytokines in response to TLR ligands was increased in AAV. 
We in fact mostly observed a decreased responsiveness of blood 
cDCs from AAV patients to various TLR ligands. �e WB assay 
we used in this study presents with several advantages. First, it 
avoids non-speci�c activation of DCs that is usually associated 
with isolation procedures. Second, it requires only small volume 
of blood (2�ml). �ird, we previously showed using this assay 
that pDCs responded only to TLR7/8 and TLR9 ligands by 
producing mainly IFN� and TNF�, but not IL-12p40, whereas 
cDCs responded to all TLR ligands, but not TLR9, by producing 
IL-12p40 and TNF�, but not IFN� (39, 42). �ese results, which 
are similar to what has been shown with puri�ed blood cDCs 
and pDCs with respect to their pattern of response to TLR and 
frequencies of cytokine-secreting cells (43), led us to consider 
that this assay mostly assesses the direct e�ect of TLR ligands 
on DC subsets. One limit of our assay is however that it assessed 
cDC and pDC responses to single TLR stimulation, and it is 
likely that these experimental conditions do not measure the 
maximum capacity of each DC subset to produce cytokines. 
Indeed, it is well known that optimal secretion of IL-12p70 by 
human cDCs requires combination of several signals such as 
a TLR�+�CD40L (44), TLR�+� in�ammatory cytokines (45), or 
several TLRs (46).

Circulating DCs have been analyzed in various autoimmune 
diseases, and their numbers have mostly been reported to be 
reduced (47). As the presence of both mDCs and pDCs have 
been demonstrated in in�ammatory tissues such as skin, synovial 
�uids, or muscle for instance, the reduction in circulating DC 
numbers has been proposed to re�ect their increased recruitment 
in these tissues. For instance, in lupus, pDCs are reduced and 
activated in the blood and are found in large number in some 
in�ammatory tissues (48, 49). By contrast, this is much less clear 
for mDCs whose migration to in�ammatory tissues has not 
been documented and that are in fact heterogeneous (50). To 
our knowledge, the responsiveness of circulating mDCs to TLR 
has not been assessed previously in autoimmune diseases. Our 
data show that patients with AAV exhibit a profound and rather 
complex dysregulation of TLR responsiveness. During the AP of 
AAV, we observed a signi�cant defect of IL-12/IL-23p40 produc-
tion by cDCs a�er stimulation with several TLR ligands (TLR3, 4, 
and 7/8), with an apparent return to basal value during remission. 
�is contrasts with previous studies that have shown an increased 
production of IL-12p70 by activated blood monocytes isolated 
from active GPA patients as compared to HD (23, 51), which was 
furthermore normalized by therapy (51). TNF� secretion by cDCs 
was also a�ected in AAV, but only a�er stimulation with TLR 3 
or 7/8 ligands. Intriguingly, during active GPA, the frequencies 
of TNF�-producing cDCs a�er TLR3 stimulation were decreased 
but were increased a�er stimulation with TLR7/8 ligand. As 
cDCs comprise two subsets, namely, CD1c+ cDCs and CD141+ 
cDCs (42), it is possible that this dysregulation in TLR respon-
siveness and cytokine production re�ect changes in these cDC 
subset frequencies. However, our unpublished and preliminary 
data indicate that both CD1c+ and CD141+ cDCs are decreased 
during AAV �ares. �ese extremely low frequencies of CD141+ 
cDCs in AAV patients precluded the possibility of assessing their 
cytokine production using the WB assay. In contrast to cDCs, 
pDC functions were only slightly a�ected with no modi�cation in 
the main cytokine produced by pDCs, i.e., IFN�. Taken together, 
these results point to a peculiar defect in IL-12p40 production in 
cDCs during AAV. It remains to be determined whether this will 
translate in reduced IL-12, IL-23, or both cytokine activities. It 
will obviously be important to assess the other functions of DCs 
in AAV patients such as antigen presentation and T cell stimula-
tion activity. However, this is technically challenging due to the 
frequencies of these cells.

�e molecular mechanism for this altered TLR-induced 
cytokine secretion by cDCs in AAV, especially during the AP, still 
remains to be understood. One possibility is that this is related 
to a modulation of TLR expression in DCs, but isolating blood 
DCs for qPCR experiments would require large volumes of blood 
and was not technically feasible in this study. As mAb to several 
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TLRs are now available, it would be interesting to assess TLR 
expression by FACS on cDCs in future studies. Of note, Tadema 
et� al. reported an increased expression of TLR2 and TLR4 on 
monocytes in AAV patients but no di�erence in TLR expression 
between patients in AP and RP (52). By contrast, Holle et� al. 
reported no di�erence in the expression and activation of TLR2, 
TLR4, and TLR9 on PMNs in GPA compared to HCs (53). Many 
single-nucleotide polymorphisms (SNPs) in genes that encode 
TLRs and their signaling molecules have been associated with 
human disease progression and susceptibility (54). Although 
Husmann et� al. recently reported on the association between 
four SNPs in TLR9 gene, we observed that the response of pDC 
to TLR9 in our assay was normal (55). Another possibility is that 
intracellular TLR-mediated signaling is altered in DCs from AAV 
patients. However, the defect we observed involved both MyD88-
dependent (TLR7/8) and MyD88-independent (TLR3) TLRs, 
suggesting that proximal signalization is not involved. �e fact 
that a decreased IL-12p40 secretion was observed a�er TLR3, 4, 
or 7/8 triggering could suggest a defect in distal NF-�B-dependent 
gene regulation in cDCs during AAV (56). Importantly, we only 
included untreated AAV patients during AP in our study exclud-
ing that the observed altered DC functions could be related to 
immunosuppressive drugs such as corticosteroids that are well 
known to inhibit the NF-�B pathway. �e role of a soluble factor 
speci�c to AAV that would inhibit TLR responsiveness of cDCs, 
but not pDCs, can not be excluded. In fact, a recent report showed 
that serum from active AAV patients promoted polarization 
toward the M2c subtype macrophages, expressing low levels of 
IL-12 and TNF� and increasing phagocytosis capacity (57).

Using the same assay, we recently reported a reduction in 
cDC numbers but without IL-12p40 dysregulation in untreated 
patients su�ering from Gaucher disease (39), a form of genetic 
lysosomal storage disease associated with a strong systemic 
in�ammatory response. �erefore, this suggests that the defect 
in TLR response we observed in AAV patients is not simply 
related to systemic in�ammation. �e numbers of circulating 
mDCs and pDCs were also shown by others to be reduced in the 
blood of rheumatoid arthritis patients and to inversely correlate 
with serum CRP levels (58). Although the numbers of mDCs 
and pDCs did not correlate with CRP in our AAV patients, it 
did do with BVAS (data not shown), suggesting again that this 
decrease is not merely a re�ection of systemic in�ammation. It 
would however be important to investigate whether the altered 
innate function of cDCs we observed in AAV is also observed in 
other autoimmune in�ammatory diseases. An important limit 
of our study is that we only assess the responsiveness of blood 
DCs and whether this could re�ect the function of DCs in�ltrat-
ing in�ammatory tissues is unknown. In spite of an important 
reduction in circulating pDCs in active AAV, the innate function 
of these cells appeared well preserved. Supporting this statement, 
a recent report in GPA patients showed that pDCs are present in 
in�ammatory issues such as the lungs in which they appear to 
secrete IFN� (20). Interestingly, using a murine model, the same 
group demonstrated to role for pDCs in driving pathogenic T 
cell responses (20). Regarding cDCs, their presence have been 
reported in renal (36) and nasal (25) lesions during AAV but 
whether their capacity to produce cytokines is altered has not 

been assessed. Investigating the function of these tissues cDCs 
would therefore be important to understand the signi�cance 
of our observation in blood DCs. One can hypothesize that 
this dysregulation of DC responsiveness to TLR is important 
to reduce in�ammatory response. However, by limiting the 
response to TLR engagement during AP, this could possibly 
impair immune responses to pathogens in AAV patients and 
play a role in the reported susceptibility of these patients to some 
infections (59, 60).

�e main function of DCs is to stimulate naïve T cells and 
drive their di�erentiation. Interestingly, we observed a reduction 
in the frequencies of IFN�-producing CD4+ T cells in the blood of 
AP GPA as compared to HC, con�rming a previous report (24). It 
is tempting to relate this to the defect of IL-12/IL-23p40 observed 
in DCs, but further investigations are required to demonstrate 
this link. A tendency to increased frequencies of IL-17-producing 
CD4+ T cells was observed in GPA, as already found in several 
studies (20, 61, 62). Although the potential role of �17 cells in 
AAV remains to be demonstrated, recent data indicate that �17 
cells are important e�ector cells in humoral autoimmune diseases 
(63). T cell subset analysis showed also discrete modi�cations 
regarding the proportion of naïve vs memory CD4+ T cells that 
actually con�rm previous studies showing a persistent expansion 
of CD4+ e�ector memory T cells, with a reciprocal decrease 
in naïve CD4+ T cells in AAV patients (64, 65). Accordingly, 
in�ltrating T cells in lung lesions and glomeruli were shown to 
consist mainly of CD4+ T cells with a memory phenotype (66, 
67). However, an important limit of our study is that we analyzed 
polyclonal and not antigen-speci�c responses of T cells.

Our study also indicates that GPA and MPA exhibit some sub-
tle di�erence regarding the function of DC and the frequencies 
of T cells. Both GPA and MPA are associated with an important 
decrease in circulating cDCs and pDCs during �ares and very 
similar dysregulation of TLR responsiveness with a decrease 
response to TLR3, 4, and 7/8. However, during remission, 
DCs from MPA, but not GPA, patients exhibited an increased 
IL-12p40 production upon TLR2 and TLR4 stimulation suggest-
ing a hyperactivated state. As TLR2 and 4 are mostly involved 
in the recognition of Gram+ and Gram� bacterial wall, it will 
be interesting to address the role of this apparent increase DC 
responsiveness in the absence of role of Staphylococcus aureus 
carriage for MPA relapses (68, 69). Another di�erence was the 
increase frequency of “�2” e�ector memory cells in MPA vs 
HC and GPA during AP. It should be noted that classifying our 
patients according to their ANCA speci�city rather than to the 
clinical syndrome did not change the results of our study as all 
MPA patients had MPO-ANCA and only 5 out of 25 GPA patients 
had MPO-ANCA rather than PR3-ANCA.

In summary, we describe for the �rst time, a dysregulated 
response to TLRs of blood DCs in AAV patients as evidenced by 
altered cytokine production, with previously unreported defect 
of IL-12/IL-23p40 pathway. Together with our recent report on 
the persistent decrease of MAIT cells in the same patients (27), 
these results point to a role for altered innate immune responses 
in the pathogenesis of AAV. How this impacts on the auto-
antigen-speci�c and pathogenic immune response remains to be 
determined.
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