A. De-zubiria-salgado and C. Herrera-diaz, Lupus nephritis: an overview of recent findings, Autoimmune Dis, vol.2012, pp.1-21, 2012.

J. A. Hardin, The lupus autoantigens and the pathogenesis of systemic lupus erythematosus, Arthritis. Rheum. 1986, vol.29, issue.4, pp.457-460

E. M. Tan, Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology, Adv. Immunol, vol.44, pp.93-151, 1989.
DOI : 10.1016/s0065-2776(08)60641-0

E. Raz, M. Brezis, E. Rosenmann, and D. Eilat, Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney, J. Immunol, vol.142, issue.9, pp.3076-3082, 1989.

J. E. Craft, Dissecting the immune cell mayhem that drives lupus pathogenesis, Sci. Transl. Med, vol.3, issue.73, pp.73-82, 2011.

H. Anders and A. B. Fogo, Immunopathology of lupus nephritis, Semin. Immunopathol, vol.36, pp.443-459, 2014.
DOI : 10.1007/s00281-013-0413-5

M. J. Shlomchik, J. E. Craft, and M. J. Mamula, From T to B and back again: positive feedback in systemic autoimmune disease, Nat. Rev. Immunol. 2001, vol.1, issue.2, pp.147-153

C. H. June, J. A. Ledbetter, M. M. Gillespie, T. Lindsten, and C. B. Thompson, T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression, Mol. Cell Biol, vol.7, issue.12, p.4472, 1987.

T. Takahashi, Y. Kuniyasu, M. Toda, N. Sakaguchi, M. Itoh et al., Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state, Int. Immunol, vol.10, issue.12, pp.1969-1980, 1998.
DOI : 10.1093/intimm/10.12.1969

URL : https://academic.oup.com/intimm/article-pdf/10/12/1969/18316501/101969.pdf

K. Wing, Y. Onishi, P. Prieto-martin, T. Yamaguchi, M. Miyara et al., CTLA-4 control over Foxp3+ regulatory T cell function, Science, vol.322, issue.5899, pp.271-275, 2008.
DOI : 10.1126/science.1160062

M. F. Ugarte-gil and G. S. Alarcón, Systemic lupus erythematosus: a therapeutic challenge for the XXI century, Clin. Rheumatol, vol.33, issue.4, pp.441-450, 2014.

A. Zubair and M. Frieri, Lupus nephritis: review of the literature, Curr. Allergy Asthma Rep. 2013, vol.13, issue.6, pp.580-586

C. Gordon, D. Wofsy, S. Wax, Y. Li, C. Pena-rossi et al., Post hoc analysis of the phase II/III APRIL-SLE study: association between response to atacicept and serum biomarkers including BLyS and APRIL: post hoc analysis of the April-SLE study. Arthritis Rheumatol, vol.69, pp.122-130, 2017.

D. J. Wallace, V. Strand, J. T. Merrill, S. Popa, A. J. Spindler et al., Efficacy and safety of an interleukin 6 monoclonal, Eur. J. Immunol, vol.47, pp.1368-1376, 2017.

, antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial, Ann. Rheum. Dis, vol.76, pp.534-542, 2016.

H. Zhang, Z. Liu, L. Huang, J. Hou, M. Zhou et al., The short-term efficacy of bortezomib combined with glucocorticoids for the treatment of refractory lupus nephritis, 2017.

D. J. Lenschow, S. C. Ho, H. Sattar, L. Rhee, G. Gray et al., Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse, J. Exp. Med, vol.181, issue.3, pp.1145-1155, 1995.

S. D. Miller, C. L. Vanderlugt, D. J. Lenschow, J. G. Pope, N. J. Karandikar et al., Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE, Immunity, vol.3, issue.6, pp.739-745, 1995.

A. H. Cross, T. J. Girard, K. S. Giacoletto, R. J. Evans, R. M. Keeling et al., Long-term inhibition of murine experimental autoimmune encephalomyelitis using CTLA-4-Fc supports a key role for CD28 costimulation, J. Clin. Invest, vol.95, issue.6, pp.2783-2789, 1995.

V. K. Kuchroo, M. Prabhu-das, J. A. Brown, A. M. Ranger, S. S. Zamvil et al., B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy, Cell, vol.80, issue.5, pp.707-718, 1995.
DOI : 10.1016/0092-8674(95)90349-6

URL : https://doi.org/10.1016/0092-8674(95)90349-6

D. I. Daikh and D. Wofsy, Cutting edge: reversal of murine lupus nephritis with CTLA4Ig and cyclophosphamide, J. Immunol. Baltim. Md, vol.166, issue.5, pp.2913-2916, 1950.

B. K. Finck, P. S. Linsley, and D. Wofsy, Treatment of murine lupus with CTLA4Ig, Science, vol.265, issue.5176, pp.1225-1227, 1994.

T. M. Foy, J. D. Laman, J. A. Ledbetter, A. Aruffo, E. Claassen et al., gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory, J. Exp. Med. 1994, vol.180, issue.1, pp.157-163

M. Mihara, I. Tan, Y. Chuzhin, B. Reddy, L. Budhai et al., CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus, J. Clin. Invest, vol.106, issue.1, pp.91-101, 2000.

A. Silvy, C. Lagresle, C. Bella, and T. Defrance, The differentiation of human memory B cells into specific antibody-secreting cells is CD40 independent, Eur J Immunol. mars, vol.26, issue.3, pp.517-524, 1996.

S. D. Miller, C. L. Vanderlugt, D. J. Lenschow, J. G. Pope, N. J. Karandikar et al., Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE, Immunity, vol.3, issue.6, pp.739-745, 1995.

N. Poirier, A. M. Azimzadeh, T. Zhang, N. Dilek, C. Mary et al., Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation

, Sci. Transl. Med. 2010, vol.2, issue.17, pp.17-27

T. Zhang, S. Fresnay, E. Welty, N. Sangrampurkar, E. Rybak et al., Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner

, Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2011, vol.11, issue.8, pp.1599-609

D. Liu, S. M. Krummey, I. R. Badell, M. Wagener, L. A. Schneeweis et al., 2B4 (CD244) induced by selective CD28 blockade functionally regulates allograft-specific CD8+ T cell responses

, J. Exp. Med. 2014, vol.211, issue.2, pp.297-311

B. H. Koehn, M. L. Ford, I. R. Ferrer, K. Borom, S. Gangappa et al., PD-1-dependent mechanisms maintain peripheral tolerance of donor-reactive CD8+ T cells to transplanted tissue, J. Immunol, vol.181, pp.5313-5322, 2008.

L. Chen and D. B. Flies, Molecular mechanisms of T cell co-stimulation and co-inhibition, Nat. Rev. Immunol. 2013, vol.13, issue.4, pp.227-242

J. Abe, S. Ueha, J. Suzuki, Y. Tokano, K. Matsushima et al., Increased Foxp3+ CD4+ regulatory T cells with intact suppressive activity but altered cellular localization in murine lupus, Am. J. Pathol, vol.173, issue.6, pp.1682-1692, 2008.

, Abbreviations: SLE: Systemic Lupus Erythematosus · Ds DNA: double stranded DNA · Ags: antigens · Abs: antibodies · AutoAbs: Autoantibodies · Tregs: regulatory T cells · TCR: T Cell Receptor · PD-1: Programmed Cell Death -1 · PDL-1: Programmed Death Ligand -1 · IDO: Indoleamine 2, 3 DiOxygenase Full correspondence: Prof. Fadi Fakhouri, pp.33-2400084660

, Fadi.Fakhouri@univ-nantes.fr