M. V. Sundaram, Canonical RTK-Ras-ERK signaling and related alternative pathways, WormBook, vol.2013, p.3885983
DOI : 10.1895/wormbook.1.80.2

URL : http://www.wormbook.org/chapters/www_RTKRasMAPKsignaling.2/RTKRasERKsignal.pdf

N. Chen and I. Greenwald, The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins, Dev Cell, vol.6, issue.2, pp.183-92, 2004.

X. Zhang and I. Greenwald, Spatial regulation of lag-2 transcription during vulval precursor cell fate patterning in Caenorhabditis elegans, Genetics, vol.188, issue.4, p.3176094, 2011.

I. S. Greenwald, P. W. Sternberg, and H. R. Horvitz, The lin-12 locus specifies cell fates in Caenorhabditis elegans, Cell, vol.34, issue.2, pp.435-479, 1983.

T. Berset, E. F. Hoier, G. Battu, S. Canevascini, and A. Hajnal, Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development, Science, vol.291, issue.5506, p.11161219, 2001.

A. S. Yoo, C. Bais, and I. Greenwald, Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development, Science, vol.303, issue.5658, p.14752159, 2004.

A. S. Yoo and I. Greenwald, LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans, Science, vol.310, issue.5752, p.3010395, 2005.

W. S. Katz, R. J. Hill, T. R. Clandinin, and P. W. Sternberg, Different levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates, Cell, vol.82, issue.2, pp.297-307, 1995.

W. S. Katz, G. M. Lesa, D. Yannoukakos, T. R. Clandinin, J. Schlessinger et al., A point mutation in the extracellular domain activates LET-23, the Caenorhabditis elegans epidermal growth factor receptor homolog, Mol Cell Biol, vol.16, issue.2, p.231031, 1996.

T. P. Zand, D. J. Reiner, and C. J. Der, Ras effector switching promotes divergent cell fates in C. elegans vulval patterning, Dev Cell, vol.20, issue.1, p.3028984, 2011.

D. J. Reiner, Ras effector switching as a developmental strategy, Small GTPases, vol.2, issue.2, p.3136914, 2011.
DOI : 10.4161/sgtp.2.2.15775

URL : https://www.tandfonline.com/doi/pdf/10.4161/sgtp.2.2.15775?needAccess=true

H. Shin, R. Kaplan, T. Duong, R. Fakieh, and D. J. Reiner, Ral Signals through a MAP4 Kinase-p38 MAP Kinase Cascade in C. elegans Cell Fate Patterning, Cell Rep, vol.24, issue.10, p.30184501, 2018.

G. A. Hobbs, C. J. Der, and K. L. Rossman, RAS isoforms and mutations in cancer at a glance, Journal of cell science, vol.129, issue.7, pp.1287-92, 2016.

P. Central and P. , , p.4869631

L. A. Feig, Ral-GTPases: approaching their 15 minutes of fame, Trends in cell biology, vol.13, issue.8, pp.419-444, 2003.

D. A. Fruman, H. Chiu, B. D. Hopkins, S. Bagrodia, L. C. Cantley et al., The PI3K Pathway in Human Disease, Cell, vol.170, issue.4, p.5726441, 2017.

B. Papke and C. J. Der, Drugging RAS: Know the enemy, Science, vol.355, issue.6330, p.28302824, 2017.
DOI : 10.1126/science.aam7622

URL : https://science.sciencemag.org/content/sci/355/6330/1158.full.pdf

N. M. Hamad, J. H. Elconin, A. E. Karnoub, W. Bai, J. N. Rich et al., Distinct requirements for Ras oncogenesis in human versus mouse cells, Genes Dev, vol.16, issue.16, p.186434, 2002.

K. H. Lim and C. M. Counter, Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/ AKT pathway during tumor maintenance, Epub 2005/11/16, vol.8, p.16286246, 2005.

K. H. Lim, K. O'hayer, S. J. Adam, S. D. Kendall, P. M. Campbell et al., Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells, Current biology: CB, vol.16, issue.24, p.17174914, 2006.

D. J. Reiner, E. A. Lundquist, and . Small-gtpases, WormBook, vol.2018, p.27218782, 2016.

T. Urano, R. Emkey, and L. A. Feig, Ral-GTPases mediate a distinct downstream signaling pathway from Ras that facilitates cellular transformation, The EMBO journal, vol.15, issue.4, p.450279, 1996.

M. A. White, T. Vale, J. H. Camonis, E. Schaefer, and M. H. Wigler, A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation, J Biol Chem, vol.271, issue.28, p.8663585, 1996.

L. R. Gentry, T. D. Martin, D. J. Reiner, and C. J. Der, Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame, Biochimica et biophysica acta, vol.1843, issue.12, p.4201770, 2014.
DOI : 10.1016/j.bbamcr.2014.09.004

URL : https://doi.org/10.1016/j.bbamcr.2014.09.004

I. Nakdimon, M. Walser, E. Frohli, and A. Hajnal, PTEN negatively regulates MAPK signaling during Caenorhabditis elegans vulval development, PLoS Genet, vol.8, issue.8, p.3420937, 2012.
DOI : 10.1371/journal.pgen.1002881

URL : https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1002881&type=printable

S. T. Armenti, E. Chan, and J. Nance, Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell, Dev Biol, vol.394, issue.1, p.4373406, 2014.

Y. Hao, R. Wong, and L. A. Feig, RalGDS couples growth factor signaling to Akt activation, Mol Cell Biol, vol.28, issue.9, p.2293091, 2008.
DOI : 10.1128/mcb.01917-07

URL : https://mcb.asm.org/content/28/9/2851.full.pdf

X. Tian, G. Rusanescu, W. Hou, B. Schaffhausen, and L. A. Feig, PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-independent mechanism, Epub RGL-1/RalGEF in VPC fate patterning, vol.21, pp.1327-1365, 2002.

, , p.125928

A. Brymora, V. A. Valova, M. R. Larsen, B. D. Roufogalis, and P. J. Robinson, The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene, J Biol Chem, vol.276, issue.32, p.11406615, 2001.

Y. Chien, S. Kim, R. Bumeister, Y. M. Loo, S. W. Kwon et al., RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival, Cell, vol.127, issue.1, p.17018283, 2006.

S. H. Issaq, K. H. Lim, and C. M. Counter, Sec5 and Exo84 foster oncogenic ras-mediated tumorigenesis. Molecular cancer research: MCR, vol.8, p.2824780, 2010.
DOI : 10.1158/1541-7786.mcr-09-0189

URL : http://mcr.aacrjournals.org/content/8/2/223.full.pdf

R. Jin, J. R. Junutula, H. T. Matern, K. E. Ervin, R. H. Scheller et al., Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase, The EMBO journal, vol.24, issue.12, p.1150893, 2005.

S. Moskalenko, D. O. Henry, C. Rosse, G. Mirey, J. H. Camonis et al., The exocyst is a Ral effector complex, Nature cell biology, vol.4, issue.1, pp.66-72, 2002.

S. Moskalenko, C. Tong, C. Rosse, G. Mirey, E. Formstecher et al., Ral GTPases regulate exocyst assembly through dual subunit interactions, J Biol Chem, vol.278, issue.51, p.14525976, 2003.
DOI : 10.1074/jbc.m308702200

URL : http://www.jbc.org/content/278/51/51743.full.pdf

K. Sugihara, S. Asano, K. Tanaka, A. Iwamatsu, K. Okawa et al., The exocyst complex binds the small GTPase RalA to mediate filopodia formation, Nature cell biology, vol.4, issue.1, pp.73-81, 2001.

J. Yochem, M. Sundaram, and M. Han, Ras is required for a limited number of cell fates and not for general proliferation in Caenorhabditis elegans, Mol Cell Biol, vol.17, issue.5, p.232122, 1997.

J. W. Much, D. J. Slade, K. Klampert, G. Garriga, and B. Wightman, The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression, Development, vol.127, issue.4, pp.703-715, 2000.

D. M. Eisenmann, J. N. Maloof, J. S. Simske, C. Kenyon, and S. K. Kim, The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development, Development, vol.125, issue.18, pp.3667-80, 1998.

J. E. Gleason, E. A. Szyleyko, and D. M. Eisenmann, Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development, Dev Biol, vol.298, issue.2, p.16930586, 2006.

J. L. Green, T. Inoue, and P. W. Sternberg, The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway, Development, vol.134, issue.22, p.17942487, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00002597

J. L. Green, T. Inoue, and P. W. Sternberg, Opposing Wnt pathways orient cell polarity during organogenesis, Cell, vol.134, issue.4, p.2603076, 2008.
DOI : 10.1016/j.cell.2008.06.026

URL : https://doi.org/10.1016/j.cell.2008.06.026

T. Inoue, H. S. Oz, D. Wiland, S. Gharib, R. Deshpande et al., C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling, Cell, vol.118, issue.6, p.15369677, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01285828

W. A. Mohler, G. Shemer, J. J. Del-campo, C. Valansi, E. Opoku-serebuoh et al., The type I membrane protein EFF-1 is essential for developmental cell fusion, Dev Cell, vol.2, issue.3, pp.355-62, 2002.
DOI : 10.1016/s1534-5807(02)00129-6

URL : https://doi.org/10.1016/s1534-5807(02)00129-6

T. R. Myers and I. Greenwald, Wnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans, Proc Natl Acad Sci, vol.104, issue.51, p.18077322, 2007.

P. Central and P. , , p.2154437

H. Sawa, L. Lobel, and H. R. Horvitz, The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein, Genes Dev, vol.10, issue.17, pp.2189-97, 1996.

P. W. Sternberg and H. R. Horvitz, lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions, Dev Biol, vol.130, issue.1, p.3181641, 1988.

C. B. Walser, G. Battu, E. F. Hoier, and A. Hajnal, Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development, Development, vol.133, issue.17, p.16908630, 2006.

T. A. Berset, E. F. Hoier, and A. Hajnal, The C. elegans homolog of the mammalian tumor suppressor Dep-1/ Scc1 inhibits EGFR signaling to regulate binary cell fate decisions, Genes Dev, vol.19, issue.11, p.1142556, 2005.

N. R. Rasmussen, D. J. Dickinson, and D. J. Reiner, Ras-Dependent Cell Fate Decisions Are Reinforced by the RAP-1 Small GTPase in Caenorhabditis elegans, Genetics, vol.210, issue.4, p.6283165, 2018.

A. Golden, From phenologs to silent suppressors: Identifying potential therapeutic targets for human disease, Mol Reprod Dev, vol.84, issue.11, p.5690827, 2017.
DOI : 10.1002/mrd.22880

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrd.22880

D. J. Dickinson, A. M. Pani, J. K. Heppert, C. D. Higgins, and B. Goldstein, Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette, Genetics, vol.200, issue.4, p.4574250, 2015.
DOI : 10.1534/genetics.115.178335

URL : http://www.genetics.org/content/200/4/1035.full.pdf

S. J. Mckay, R. Johnsen, J. Khattra, J. Asano, D. L. Baillie et al., Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans, Cold Spring Harb Symp Quant Biol, vol.68, pp.159-69, 2003.

H. Shin and D. J. Reiner, The Signaling Network Controlling C. elegans Vulval Cell Fate Patterning, Journal of developmental biology, vol.6, issue.4, p.30544993, 2018.
DOI : 10.3390/jdb6040030

URL : https://www.mdpi.com/2221-3759/6/4/30/pdf

O. Thompson, M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing et al., The million mutation project: a new approach to genetics in Caenorhabditis elegans, Genome Res, vol.23, issue.10, p.3787271, 2013.

R. S. Kamath, M. Martinez-campos, P. Zipperlen, A. G. Fraser, and J. Ahringer, Effectiveness of specific RNAmediated interference through ingested double-stranded RNA in Caenorhabditis elegans, Genome biology, vol.2, issue.1, p.17598, 2001.

P. B. Tan, M. R. Lackner, and S. K. Kim, MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction, Cell, vol.93, issue.4, pp.569-80, 1998.

R. M. Wolthuis, N. D. De-ruiter, R. H. Cool, and J. L. Bos, Stimulation of gene induction and cell growth by the Ras effector Rlf, The EMBO journal, vol.16, issue.22, p.1170279, 1997.

S. Paradis, M. Ailion, A. Toker, J. H. Thomas, and G. Ruvkun, A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans, Genes Dev, vol.13, issue.11, p.316759, 1999.

S. Paradis and G. Ruvkun, Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor, Genes Dev, vol.12, issue.16, p.317081, 1998.

E. B. Gil, M. Link, E. Liu, L. X. Johnson, C. D. Lees et al., Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene, Proc Natl Acad Sci, vol.96, issue.6, p.15871, 1999.

S. Ogg and G. Ruvkun, The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway, Molecular cell, vol.2, issue.6, p.9885576, 1998.

K. Lin, J. B. Dorman, A. Rodan, and C. Kenyon, daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans, Science, vol.278, issue.5341, p.9360933, 1997.

S. Ogg, S. Paradis, S. Gottlieb, G. I. Patterson, L. Lee et al., The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans, Nature, vol.389, issue.6654, pp.994-1003, 1997.

A. T. Chen, C. Guo, O. A. Itani, B. G. Budaitis, T. W. Williams et al., Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans, Genetics, vol.201, issue.2, p.4596673, 2015.

E. S. Kwon, S. D. Narasimhan, K. Yen, and H. A. Tissenbaum, A new DAF-16 isoform regulates longevity, Nature, vol.466, issue.7305, 2010.

P. Central and P. , , p.3109862

B. Vanhaesebroeck and D. R. Alessi, The PI3K-PDK1 connection: more than just a road to PKB, Biochem J, vol.346, issue.3, p.1220886, 2000.

C. Braendle and M. A. Felix, Plasticity and errors of a robust developmental system in different environments, Dev Cell, vol.15, issue.5, pp.714-738, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00339142

D. Papini, L. Langemeyer, M. A. Abad, A. Kerr, I. Samejima et al., TD-60 links RalA GTPase function to the CPC in mitosis, Nat Commun, vol.6, p.4510650, 2015.

T. Goi, G. Rusanescu, T. Urano, and L. A. Feig, Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth, Mol Cell Biol, vol.19, issue.3, p.10022860, 1999.

P. Central and P. , , p.83966

P. W. Sternberg and H. R. Horvitz, The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans, Cell, vol.58, issue.4, pp.679-93, 1989.

R. V. Aroian, M. Koga, J. E. Mendel, Y. Ohshima, and P. W. Sternberg, The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily, Nature, vol.348, issue.6303, pp.693-702, 1990.

G. J. Beitel, S. G. Clark, and H. R. Horvitz, Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction, Nature, vol.348, issue.6301, pp.503-512, 1990.

M. Han and P. W. Sternberg, let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein, Cell, vol.63, issue.5, pp.921-952, 1990.

R. J. Hill and P. W. Sternberg, The gene lin-3 encodes an inductive signal for vulval development in C. elegans, Nature, vol.358, issue.6386, pp.470-476, 1992.

D. J. Dickinson, J. D. Ward, D. J. Reiner, and B. Goldstein, Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination, Nature methods, vol.10, issue.10, p.3905680, 2013.

H. R. Horvitz, S. Brenner, J. Hodgkin, and R. K. Herman, A uniform genetic nomenclature for the nematode Caenorhabditis elegans, Molecular & general genetics: MGG, vol.175, issue.2, pp.129-162, 1979.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, issue.1, p.1213120, 1974.

L. Timmons and A. Fire, Specific interference by ingested dsRNA, Nature, vol.395, issue.6705, 1998.
DOI : 10.1038/27579

P. W. Sternberg and H. R. Horvitz, Pattern formation during vulval development in C. elegans, Cell, vol.44, issue.5, pp.761-72, 1986.

S. T. Lamitina, R. Morrison, G. W. Moeckel, and K. Strange, Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress, American journal of physiology Cell physiology, vol.286, issue.4, p.14644776, 2004.

S. Grimbert, V. Velazquez, A. M. Braendle, and C. , Physiological Starvation Promotes Caenorhabditis elegans Vulval Induction. G3 (Bethesda), p.30037804, 2018.
DOI : 10.1534/g3.118.200449

URL : https://doi.org/10.1534/g3.118.200449