K. Asahina, S. Y. Tsai, P. Li, M. Ishii, R. E. Maxson et al., Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development, Hepatology, vol.49, pp.998-1011, 2009.

W. S. Blaner, S. M. O'byrne, N. Wongsiriroj, J. Kluwe, D. M. D'ambrosio et al., Hepatic stellate cell lipid droplets: A specialized lipid droplet for retinoid storage, Biochim. Biophys. Acta, vol.1791, pp.467-473, 2009.
DOI : 10.1016/j.bbalip.2008.11.001

URL : http://europepmc.org/articles/pmc2719539?pdf=render

T. Tsuchida and S. L. Friedman, Mechanisms of hepatic stellate cell activation, Nat. Rev. Gastroenterol. Hepatol, vol.14, pp.397-411, 2017.

M. Tuohetahuntila, M. R. Molenaar, B. Spee, J. F. Brouwers, M. Houweling et al., ATGL and DGAT1 are involved in the turnover of newly synthesized triacylglycerols in hepatic stellate cells, J. Lipid Res, vol.57, pp.1162-1174, 2016.

M. Tuohetahuntila, M. R. Molenaar, B. Spee, J. F. Brouwers, R. Wubbolts et al., Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation, J. Biol. Chem, vol.292, pp.12436-12448, 2017.

P. Pingitore, P. Dongiovanni, B. M. Motta, M. Meroni, S. M. Lepore et al., PNPLA3 overexpression results in reduction of proteins predisposing to fibrosis, Hum. Mol. Genet, vol.25, pp.5212-5222, 2016.

F. V. Bruschi, T. Claudel, M. Tardelli, A. Caligiuri, T. M. Stulnig et al., The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells, Hepatology, vol.65, pp.1875-1890, 2017.

Y. Hong, S. Li, J. Wang, and Y. Li, In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A, Sci. Rep, vol.8, 2018.

Z. Zhang, S. Zhao, Z. Yao, L. Wang, J. Shao et al., Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell, Redox Biol, vol.11, pp.322-334, 2017.

V. Hernández-gea and S. L. Friedman, Autophagy fuels tissue fibrogenesis, Autophagy, vol.8, pp.849-850, 2012.

L. L. Jophlin, Y. Koutalos, C. Chen, V. H. Shah, and D. C. Rockey, Hepatic stellate cells retain retinoid-laden lipid droplets after cellular transdifferentiation into activated myofibroblasts, Am. J. Physiol. Gastrointest. Liver Physiol, 2018.
DOI : 10.1152/ajpgi.00251.2017

N. Testerink, M. Ajat, M. Houweling, J. F. Brouwers, V. V. Pully et al., Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation, PLoS ONE, vol.7, 2012.

M. R. Molenaar, A. B. Vaandrager, and J. B. Helms, Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells, Lipid Insights, vol.10, 2017.
DOI : 10.1177/1178635317747281

URL : http://europepmc.org/articles/pmc5734559?pdf=render

S. M. O'byrne, N. Wongsiriroj, J. Libien, S. Vogel, I. J. Goldberg et al.,

, J. Biol. Chem, vol.280, pp.35647-35657, 2005.

J. Kluwe, N. Wongsiriroj, J. S. Troeger, G. Gwak, D. H. Dapito et al., Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis, Gut, vol.60, pp.1260-1268, 2011.

S. M. O'byrne and W. S. Blaner, Retinol and retinyl esters: Biochemistry and physiology, J. Lipid Res, vol.54, pp.1731-1743, 2013.

A. Saeed, R. P. Dullaart, T. C. Schreuder, H. Blokzijl, and K. N. Faber, Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD), Nutrients, vol.10, 2017.

D. Bitetto, N. Bortolotti, E. Falleti, S. Vescovo, C. Fabris et al., A deficiency is associated with hepatitis C virus chronic infection and with unresponsiveness to interferon-based antiviral therapy, Hepatology, vol.57, pp.925-933, 2013.

G. V. Chaves, S. E. Pereira, C. J. Saboya, D. Spitz, C. S. Rodrigues et al., Association between liver vitamin A reserves and severity of nonalcoholic fatty liver disease in the class III obese following bariatric surgery, Obes. Surg, vol.24, pp.219-224, 2014.

Y. Lee and W. Jeong, Retinoic acids and hepatic stellate cells in liver disease, J. Gastroenterol. Hepatol, vol.2012, pp.75-79

K. Murakami, T. Kaji, R. Shimono, Y. Hayashida, H. Matsufuji et al., Therapeutic effects of vitamin A on experimental cholestatic rats with hepatic fibrosis, Pediatr. Surg. Int, vol.27, pp.863-870, 2011.

S. Hisamori, C. Tabata, Y. Kadokawa, K. Okoshi, R. Tabata et al., All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production, Liver Int, vol.28, pp.1217-1225, 2008.

D. Yu, S. Cai, A. Mennone, P. Vig, and J. L. Boyer, Cenicriviroc, a cytokine receptor antagonist, potentiates all-trans retinoic acid in reducing liver injury in cholestatic rodents, Liver Int, vol.38, pp.1128-1138, 2018.

K. Hellemans, P. Verbuyst, E. Quartier, F. Schuit, K. Rombouts et al., Differential modulation of rat hepatic stellate phenotype by natural and synthetic retinoids, Hepatology, vol.39, pp.97-108, 2004.

V. A. Fortuna, L. C. Trugo, and R. Borojevic, Acyl-CoA: Retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT) activation during the lipocyte phenotype induction in hepatic stellate cells, J. Nutr. Biochem, vol.12, pp.610-621, 2001.

H. Yi, Y. Lee, J. Byun, W. Seo, J. Jeong et al., Alcohol dehydrogenase III exacerbates liver fibrosis by enhancing stellate cell activation and suppressing natural killer cells in mice, Hepatology, vol.60, pp.1044-1053, 2014.

J. S. Troeger, I. Mederacke, G. Gwak, D. H. Dapito, X. Mu et al., Deactivation of hepatic stellate cells during liver fibrosis resolution in mice, Gastroenterology, vol.143, pp.1073-1083, 2012.

T. Kisseleva, M. Cong, Y. Paik, D. Scholten, C. Jiang et al., Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis, Proc. Natl. Acad. Sci, vol.109, pp.9448-9453, 2012.

M. B. Bansal, Hepatic stellate cells: Fibrogenic, regenerative or both? Heterogeneity and context are key, Hepatol. Int, vol.10, pp.902-908, 2016.

V. Natarajan, E. N. Harris, S. Kidambi, and . Secs, Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis, Biomed. Res. Int, pp.1-9, 2017.

Y. J. Wan, D. An, Y. Cai, J. J. Repa, T. Hung-po-chen et al., Hepatocyte-specific mutation establishes retinoid X receptor alpha as a heterodimeric integrator of multiple physiological processes in the liver, Mol. Cell. Biol, vol.20, pp.4436-4444, 2000.

Y. He, J. Tsuei, and Y. Y. Wan, Biological functional annotation of retinoic acid alpha and beta in mouse liver based on genome-wide binding, Am. J. Physiol. Gastrointest. Liver Physiol, vol.307, pp.205-218, 2014.

M. Boergesen, T. Å. Pedersen, B. Gross, S. J. Van-heeringen, D. Hagenbeek et al., Genome-wide profiling of liver X. receptor, retinoid X. receptor, and peroxisome proliferator-activated receptor ? in mouse liver reveals extensive sharing of binding sites, Mol. Cell. Biol, vol.32, pp.852-867, 2012.

J. Dubois-chevalier, V. Dubois, H. Dehondt, P. Mazrooei, C. Mazuy et al., The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions, Genome Res, vol.27, pp.985-996, 2017.

H. Liu, Y. Hu, and Y. Wan, Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration, Oncotarget, vol.7, pp.1096-1106, 2016.

I. O. Shmarakov, H. Jiang, K. J. Yang, I. J. Goldberg, and W. S. Blaner, Hepatic retinoid stores are required for normal liver regeneration, J. Lipid Res, vol.54, pp.893-908, 2013.

T. Imai, M. Jiang, P. Kastner, P. Chambon, and D. Metzger, Selective ablation of retinoid X receptor alpha in hepatocytes impairs their lifespan and regenerative capacity, Proc. Natl. Acad. Sci. USA, vol.98, pp.4581-4586, 2001.

M. Ohata, M. Yamauchi, K. Takeda, G. Toda, S. Kamimura et al., RAR and RXR expression by Kupffer cells, Exp. Mol. Pathol, vol.68, pp.13-20, 2000.

E. Gonzalez-sanchez, D. Firrincieli, C. Housset, and N. Chignard, Expression patterns of nuclear receptors in parenchymal and non-parenchymal mouse liver cells and their modulation in cholestasis, Biochim. Biophys. Acta, vol.1863, pp.1699-1708, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01510262

Z. Li, J. K. Kruijt, R. J. Van-der-sluis, T. J. Van-berkel, and M. Hoekstra, Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells, Physiol. Genom, vol.45, pp.268-275, 2013.

K. Uchimura, M. Nakamuta, M. Enjoji, T. Irie, R. Sugimoto et al., Activation of retinoic X receptor and peroxisome proliferator-activated receptor-gamma inhibits nitric oxide and tumor necrosis factor-alpha production in rat Kupffer cells, Hepatology, vol.33, pp.91-99, 2001.

M. Marzioni, S. Saccomanno, L. Agostinelli, C. Rychlicki, S. De-minicis et al., PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: Possible implications for sclerosing cholangitis, J. Hepatol, vol.58, pp.750-756, 2013.

K. Neumann, N. Kruse, B. Szilagyi, U. Erben, C. Rudolph et al., Connecting liver and gut: Murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid, Hepatology, vol.55, 1976.

R. Weiskirchen and F. Tacke, Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology, Hepatobiliary Surg. Nutr, vol.3, pp.344-363, 2014.

S. Ichikawa, D. Mucida, A. J. Tyznik, M. Kronenberg, and H. Cheroutre, Hepatic stellate cells function as regulatory bystanders, J. Immunol, vol.186, pp.5549-5555, 2011.
DOI : 10.4049/jimmunol.1003917

URL : http://www.jimmunol.org/content/186/10/5549.full.pdf

D. N. D'ambrosio, J. L. Walewski, R. D. Clugston, P. D. Berk, R. A. Rippe et al., Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage, PLoS ONE, vol.6, 2011.