K. O. Gradel, H. L. Nielsen, H. C. Schønheyder, T. Ejlertsen, B. Kristensen et al., Increased short-and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis, Gastroenterology, vol.137, pp.495-501, 2009.

H. H. Uhlig, T. Schwerd, S. Koletzko, N. Shah, J. Kammermeier et al., The diagnostic approach to monogenic very early onset inflammatory bowel disease, Gastroenterology, vol.147, pp.990-1007, 2014.

S. R. Vavricka, A. Schoepfer, M. Scharl, P. L. Lakatos, A. Navarini et al., Extraintestinal manifestations of inflammatory bowel disease in children, Inflamm Bowel Dis, vol.21, pp.1982-92, 2015.

Y. L. Jones-hall and M. B. Grisham, Immunopathological characterization of selected mouse models of inflammatory bowel disease: comparison to human disease, Pathophysiology, vol.21, pp.267-88, 2014.

B. A. Hendrickson, R. Gokhale, and J. H. Cho, Clinical aspects and pathophysiology of inflammatory bowel disease, Society, vol.15, pp.79-94, 2002.

N. A. Braus and D. E. Elliott, Advances in the pathogenesis and treatment of IBD, Clin Immunol, vol.132, pp.1-9, 2009.

J. Cosnes, C. Gower-rousseau, P. Seksik, and A. Cortot, Epidemiology and natural history of inflammatory bowel diseases, Gastroenterology, vol.140, pp.1785-94, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631553

K. Karlinger, T. Györke, E. Makö, A. Mester, and Z. Tarján, The epidemiology and the pathogenesis of inflammatory bowel disease, Eur J Radiol, vol.35, pp.154-67, 2000.

A. Kaser and R. S. Blumberg, Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease, Gastroenterology, vol.140, 2011.

M. G. Neuman and R. M. Nanau, Inflammatory bowel disease: role of diet, microbiota, life style, Transl Res, vol.160, pp.29-44, 2012.

S. Massironi, R. E. Rossi, F. A. Cavalcoli, D. Valle, S. Fraquelli et al., Long-term intake of dietary fat and risk of ulcerative colitis and Crohn's disease, Clin Nutr, vol.32, pp.776-84, 2013.

C. A. Anderson, G. Boucher, C. W. Lees, A. Franke, D. '-amato et al., Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47, Nat Genet, vol.43, pp.246-52, 2011.

A. Franke, D. P. Mcgovern, J. C. Barrett, K. Wang, G. L. Radford-smith et al., Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nat Genet, vol.42, pp.1118-1143, 2010.

S. Ishihara, M. M. Aziz, Y. T. Kazumori, H. Kinoshita, and Y. , Inflammatory bowel disease: review from the aspect of genetics, J Gastroenterol, vol.44, pp.1097-108, 2009.

R. H. Duerr, K. D. Taylor, S. R. Brant, J. D. Rioux, M. S. Silverberg et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene, Science, vol.314, pp.1461-1464, 2006.

J. C. Barrett, S. Hansoul, D. L. Nicolae, J. H. Cho, R. H. Duerr et al.,

, Genome-wide association defines more than thirty distinct susceptibility loci for Crohn's disease, Nat Genet, vol.40, pp.955-62, 2009.

, Genome-wide

J. Hampe, A. Franke, P. Rosenstiel, A. Till, M. Teuber et al., A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nat Genet, vol.39, pp.207-218, 2007.

D. Massey and M. Parkes, Genome-wide association scanning highlights two autophagy genes, ATG16L1 and IRGM, as being significantly associated with Crohn's disease, Autophagy, vol.3, pp.649-51, 2007.

J. P. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. P. Cézard et al., Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease, Nature, vol.411, pp.599-603, 2001.

N. T. Ventham, N. A. Kennedy, E. R. Nimmo, and J. Satsangi, Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics, Gastroenterology, vol.145, pp.293-308, 2013.

A. Gutiérrez, M. Scharl, L. Sempere, E. Holler, P. Zapater et al., Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn's disease, Gut, vol.63, pp.272-80, 2014.

M. Parkes, J. C. Barrett, N. J. Prescott, M. Tremelling, C. A. Anderson et al., Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility, Nat Genet, vol.39, pp.830-832, 2007.

G. Tan, R. H. Li, C. Li, F. Wu, X. M. Zhao et al., Down-regulation of human enteric antimicrobial peptides by NOD2 during differentiation of the Paneth cell lineage, Sci Rep, vol.5, p.8383, 2015.

Q. Zhang, Y. Pan, R. Yan, B. Zeng, H. Wang et al., Commensal bacteria direct selective cargo sorting to promote symbiosis, Nat Immunol, vol.16, pp.918-944, 2015.

K. Cadwell, J. Y. Liu, S. L. Brown, H. Miyoshi, J. Loh et al., A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells, Nature, vol.456, pp.259-63, 2008.

R. Okamoto and M. Watanabe, Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease, J Gastroenterol, vol.51, issue.1, pp.11-21, 2015.

T. E. Adolph, M. F. Tomczak, L. Niederreiter, H. J. Ko, J. Böck et al., Paneth cells as a site of origin for intestinal inflammation, Nature, vol.503, pp.272-278, 2013.

L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, pp.141-53, 2014.

K. Hase, K. Kawano, T. Nochi, G. S. Pontes, S. Fukuda et al., Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response, Nature, vol.462, pp.226-256, 2009.

L. Pastorelli, D. Salvo, C. Mercado, J. R. Vecchi, M. Pizarro et al., Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics, Front Immunol, vol.4, p.280, 2013.

S. H. Rhee, E. Im, M. Riegler, E. Kokkotou, M. O'brien et al., Pathophysiological role of toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation, Proc Natl Acad Sci U S A, vol.102, pp.13610-13615, 2005.

S. Rakoff-nahoum, J. Paglino, F. Eslami-varzaneh, S. Edberg, and R. Medzhitov, Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis, Cell, vol.118, pp.229-270, 2004.

H. Chen, Z. D. Wang, M. S. Chen, X. Q. Zhang, L. P. Shen et al., Activation of toll-like receptors by intestinal microflora reduces radiation-induced DNA damage in mice, Mutat Res Toxicol Environ Mutagen, vol.774, pp.22-30, 2014.

O. Takeuchi and S. Akira, Pattern recognition receptors and inflammation, Cell, vol.140, pp.805-825, 2010.
DOI : 10.1016/j.cell.2010.01.022

URL : https://doi.org/10.1016/j.cell.2010.01.022

G. Y. Chen and G. Nez, Inflammasomes in intestinal inflammation and cancer, Gastroenterology, vol.141, pp.1986-99, 2011.

A. T. Gewirtz, T. A. Navas, S. Lyons, P. J. Godowski, and J. L. Madara, Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression, J Immunol, vol.167, pp.1882-1887, 2001.

L. Bourhis, L. Magalhaes, J. G. Selvanantham, T. Travassos, L. H. Geddes et al., Role of Nod1 in mucosal dendritic cells during Salmonella pathogenicity island 1-independent Salmonella enterica serovar Typhimurium infection, Infect Immun, vol.77, pp.4480-4486, 2009.

N. Ranson and R. Eri, The role of inflammasomes in intestinal inflammation, Am J Med Biol Res, vol.1, pp.64-76, 2013.

D. N. Frank, A. L. St-amand, R. A. Feldman, E. C. Boedeker, N. Harpaz et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases, Proc Natl Acad Sci U S A, vol.104, issue.34, pp.13780-13785, 2007.

S. E. Winter and A. J. Bäumler, A breathtaking feat: to compete with the gut microbiota, Salmonella drives its host to provide a respiratory electron acceptor, Gut Microbes, vol.2, issue.1, pp.58-60, 2011.

A. Lundin, C. M. Bok, L. Aronsson, B. Björkholm, J. A. Gustafsson et al., Gut flora, toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine, Cell Microbiol, vol.10, pp.319-348, 2006.

B. M. Fournier and C. A. Parkos, The role of neutrophils during intestinal inflammation, Mucosal Immunol, vol.5, pp.354-66, 2012.

M. R. Spalinger, G. Rogler, and M. Scharl, Crohn's disease: loss of tolerance or a disorder of autophagy, Dig Dis, vol.32, pp.370-377, 2014.

M. Van-der-sluis, D. Koning, B. A. , D. Bruijn, A. C. Velcich et al., Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection, Gastroenterology, vol.131, pp.117-146, 2006.

U. A. Wenzel, M. K. Magnusson, A. Rydström, C. Jonstrand, J. Hengst et al., Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis, PLoS One, vol.9, 2014.

J. Petersson, O. Schreiber, G. C. Hansson, S. J. Gendler, A. Velcich et al., Importance and regulation of the colonic mucus barrier in a mouse model of colitis, Am J Physiol Gastrointest Liver Physiol, vol.300, pp.327-360, 2011.

M. W. Babyatsky, G. Rossiter, and D. K. Podolsky, Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease, Gastroenterology, vol.110, pp.975-84, 1996.

M. Coccia, O. J. Harrison, C. Schiering, M. J. Asquith, B. Becher et al., IL1b mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells, J Exp Med, vol.209, pp.1595-609, 2012.

M. Yamamoto, K. Yoshizaki, T. Kishimoto, and H. Ito, IL-6 is required for the development of Th1 cell-mediated murine colitis, J Immunol, vol.164, pp.4878-82, 2000.

K. A. Kuhn, N. A. Manieri, T. C. Liu, and T. S. Stappenbeck, IL-6 stimulates intestinal epithelial proliferation and repair after injury, PLoS One, vol.9, p.114195, 2014.

H. Ito, M. Takazoe, Y. Fukuda, T. Hibi, K. Kusugami et al., A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease, Gastroenterology, vol.126, pp.989-96, 2004.

J. R. Turner, Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application, Am J Pathol, vol.169, pp.1901-1910, 2006.

M. Secondulfo, L. De-magistris, R. Fiandra, L. Caserta, M. Belletta et al., Intestinal and their permeability first degree in Crohn's relatives disease patients, Dig Liver Dis, vol.33, issue.8, pp.80045-80046, 2001.

P. Brandtzaeg, Mucosal immunity: induction, dissemination, and effector functions, Scand J Immunol, vol.70, pp.505-520, 2009.

N. A. Nagalingam and S. V. Lynch, Role of the microbiota in inflammatory bowel diseases, Inflamm Bowel Dis, vol.18, pp.968-84, 2012.

L. Frehn, A. Jansen, E. Bennek, A. D. Mandic, I. Temizel et al., Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases, PLoS One, vol.9, 2014.

E. Homsak, D. Miceti?-turk, and B. Bozic, Autoantibodies pANCA, GAB and PAB in inflammatory bowel disease: prevalence, characteristics and diagnostic value, Wien Klin Wochenschr, vol.122, pp.19-25, 2010.

E. Israeli, I. Grotto, B. Gilburd, R. D. Balicer, E. Goldin et al., AntiSaccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease, Gut, vol.54, pp.1232-1238, 2005.

D. Bertin, J. C. Grimaud, N. Lesavre, C. Benelmouloud, A. Desjeux et al., Targeting tissular immune response improves diagnostic performance of anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn's disease, PLoS One, vol.8, issue.11, p.80433, 2013.

D. Damaskos and G. Kolios, Probiotics and prebiotics in inflammatory bowel disease: microflora "on the scope, Br J Clin Pharmacol, vol.65, pp.453-67, 2008.

A. Fite, S. Macfarlane, E. Furrie, B. Bahrami, J. H. Cummings et al., Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient age and disease severity and duration, J Clin Microbiol, vol.51, pp.849-56, 2013.

G. Latella, C. Fiocchi, and R. Caprili, News from the "5th international meeting on inflammatory bowel diseases" CAPRI 2010, J Crohns Colitis, vol.4, pp.690-702, 2010.

R. Hansen, F. L. Cameron, G. L. Hold, E. M. El-omar, and R. K. Russell, Inflammatory bowel disease, vol.20, pp.473-481, 2010.

M. Rajili?-stojanovi?, F. Shanahan, F. Guarner, and W. M. De-vos, Phylogenetic analysis of dysbiosis in ulcerative colitis during remission, Inflamm Bowel Dis, vol.19, pp.481-489, 2013.

H. Nemoto, K. Kataoka, H. Ishikawa, K. Ikata, H. Arimochi et al., Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis, Dig Dis Sci, vol.57, pp.2955-64, 2012.

O. Nitzan, M. Elias, A. Peretz, and W. Saliba, Role of antibiotics for treatment of inflammatory bowel disease, World J Gastroenterol, vol.22, pp.1078-87, 2016.

D. Turner, A. Levine, K. L. Kolho, R. Shaoul, and O. Ledder, Combination of oral antibiotics may be effective in severe pediatric ulcerative colitis: a preliminary report, J Crohns Colitis, vol.8, pp.1464-70, 2014.

S. Wang, Z. R. Wang, and C. Q. Yang, Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease, Exp Ther Med, vol.4, pp.1051-1057, 2012.

R. Rahimi, S. Nikfar, A. Rezaie, and M. Abdollahi, A meta-analysis of antibiotic therapy for active ulcerative colitis, Dig Dis Sci, vol.52, pp.2920-2925, 2007.

K. J. Khan, T. A. Ullman, A. C. Ford, M. T. Abreu, A. Abadir et al., Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis, Am J Gastroenterol, vol.106, pp.661-73, 2011.

J. B. Mcphee, C. L. Small, S. A. Reid-yu, J. R. Brannon, L. Moual et al., Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn's disease-associated adherent-invasive Escherichia coli, Infect Immun, vol.82, pp.3383-93, 2014.

K. Rahman, M. Sasaki, A. Nusrat, and J. M. Klapproth, Crohn's disease-associated Escherichia coli survive in macrophages by suppressing NF?B signaling, Inflamm Bowel Dis, vol.20, pp.1419-1444, 2014.

K. X. Papamichael, G. Papaioannou, H. Karga, A. Roussos, and G. J. Mantzaris, Helicobacter pylori infection and endocrine disorders: is there a link?, World J Gastroenterol, vol.15, issue.22, pp.2701-2708, 2009.

M. Feller, K. Huwiler, R. Stephan, E. Altpeter, A. Shang et al., Mycobacterium avium subspecies paratuberculosis and Crohn's disease: a systematic review and meta-analysis, Lancet Infect Dis, vol.7, pp.607-620, 2007.

M. M. Bosca-watts, Pathogenesis of Crohn's disease: bug or no bug, World J Gastrointest Pathophysiol, vol.6, issue.1, pp.1-12, 2015.

R. L. Santos, S. Zhang, R. M. Tsolis, R. A. Kingsley, L. G. Adams et al., Animal models of Salmonella infections: enteritis versus typhoid fever, Microbes Infect, vol.3, pp.1335-1379, 2001.

S. L. Marcus, J. H. Brumell, C. G. Pfeifer, and B. B. Finlay, Salmonella pathogenicity islands: big virulence in small packages, Microbes Infect, vol.2, pp.145-56, 2000.

J. E. Galan, Salmonella interactions with host cells: type III secretion at work, Biology, vol.17, pp.53-86, 2001.

K. Kyrova, H. Stepanova, I. Rychlik, M. Faldyna, and J. Volf, SPI-1 encoded genes of Salmonella Typhimurium influence differential polarization of porcine alveolar macrophages in vitro, BMC Vet Res, vol.8, p.115, 2012.

M. Hensel, Evolution of pathogenicity islands of Salmonella enterica, Int J Med Microbiol, vol.294, pp.95-102, 2004.

P. Broz, M. B. Ohlson, and D. M. Monack, Innate immune response to Salmonella typhimurium, a model enteric pathogen, Gut Microbes, vol.3, pp.62-70, 2012.

C. M. Khan, The dynamic interactions between Salmonella and the microbiota, within the challenging niche of the gastrointestinal tract, Int Sch Res Notices, p.846049, 2014.

H. Köhler, T. Sakaguchi, B. P. Hurley, B. A. Kase, H. C. Reinecker et al., Salmonella enterica serovar Typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage, Am J Physiol Gastrointest Liver Physiol, vol.293, issue.1, pp.178-87, 2006.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung et al., CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance, Science, vol.307, pp.254-262, 2005.

A. Vazquez-torres, J. Jones-carson, A. J. Bäumler, S. Falkow, R. Valdivia et al., Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes, Nature, vol.401, pp.804-812, 1999.

T. P. Moest and S. Méresse, Salmonella T3SSs: successful mission of the secret(ion) agents, Curr Opin Microbiol, vol.16, pp.38-44, 2013.

S. Patel and B. Mccormick, Mucosal inflammatory response to Salmonella typhimurium infection, Front Immunol, vol.5, p.311, 2014.

A. P. Liao, E. O. Petrof, S. Kuppireddi, Y. Zhao, Y. Xia et al., Salmonella type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells, PLoS One, vol.3, 2008.

Z. Ye, E. O. Petrof, D. Boone, C. E. Sun, and J. , Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination, Am J Pathol, vol.171, pp.882-92, 2007.

R. M. Jones, H. Wu, C. Wentworth, L. Luo, L. Collier-hyams et al., Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade, Cell Host Microbe, vol.3, pp.233-277, 2008.

D. M. Monack, D. Hersh, N. Ghori, D. Bouley, A. Zychlinsky et al., Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model, J Exp Med, vol.192, pp.249-58, 2000.

S. Mariathasan, K. Newton, D. M. Monack, D. Vucic, D. M. French et al., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf, Nature, vol.430, pp.213-221, 2004.

J. Rolli, N. Loukili, S. Levrand, N. Rosenblatt-velin, S. Rignault-clerc et al., Bacterial flagellin elicits widespread innate immune defense mechanisms, apoptotic signaling, and a sepsis-like systemic inflammatory response in mice, Crit Care, 2010.

Y. Yu, H. Zeng, S. Lyons, A. Carlson, D. Merlin et al., TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism, Am J Physiol Gastrointest Liver Physiol, vol.285, 2003.

S. M. Bueno, S. Riquelme, C. A. Riedel, and A. M. Kalergis, Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity, Immunology, vol.137, pp.28-36, 2012.

K. Geddes, S. Rubino, C. Streutker, J. H. Cho, J. G. Magalhaes et al., Nod1 and Nod2 regulation of inflammation in the Salmonella colitis model, Infect Immun, vol.78, pp.5107-5122, 2010.

L. O. Moreira and D. S. Zamboni, NOD1 and NOD2 signaling in infection and inflammation, Front Immunol, vol.8, issue.3, p.328, 2012.

L. H. Travassos, L. A. Carneiro, M. Ramjeet, S. Hussey, Y. G. Kim et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry: commentary, Nat Rev Immunol, vol.11, pp.55-62, 2010.

S. D. Lawhon, R. Maurer, M. Suyemoto, and C. Altier, Intestinal short-chain fatty acids alter Salmonella Typhimurium invasion gene expression and virulence through BarA/SirA, Mol Microbiol, vol.46, issue.5, pp.1451-64, 2002.

I. Gantois, R. Ducatelle, F. Pasmans, F. Haesebrouck, I. Hautefort et al., Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression, Appl Environ Microbiol, vol.72, issue.1, pp.946-955, 2006.
DOI : 10.1128/aem.72.1.946-949.2006

URL : https://aem.asm.org/content/72/1/946.full.pdf

C. C. Hung, C. D. Garner, J. M. Slauch, Z. W. Dwyer, S. D. Lawhon et al., The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD, Mol Microbiol, vol.87, 2013.

P. Thiennimitr, S. E. Winter, M. G. Winter, M. N. Xavier, V. Tolstikov et al., From the cover: intestinal inflammation allows Salmonella to use Frontiers in Immunology | www, vol.8, p.191, 2017.

, ethanolamine to compete with the microbiota, Proc Natl Acad Sci U S A, vol.108, pp.17480-17485, 2011.

S. E. Winter, P. Thiennimitr, M. G. Winter, B. P. Butler, D. L. Huseby et al., Gut inflammation provides a respiratory electron acceptor for Salmonella, Nature, vol.467, pp.426-435, 2010.

P. Thiennimitr, S. E. Winter, and A. J. Bäumler, Salmonella, the host and its microbiota, Curr Opin Microbiol, vol.15, pp.108-122, 2012.

N. Gill, R. B. Ferreira, L. C. Antunes, B. P. Willing, I. Sekirov et al., Neutrophil elastase alters the murine gut microbiota resulting in enhanced Salmonella colonization, PLoS One, vol.7, p.49646, 2012.

R. B. Sartor, Microbial influences in inflammatory bowel diseases, Gastroenterology, vol.134, pp.577-94, 2008.

H. Qiu, X. Sun, M. Sun, C. He, Z. Li et al., Serum bacterial toxins are related to the progression of inflammatory bowel disease, Scand J Gastroenterol, vol.49, pp.826-859, 2014.

T. Jess, J. Simonsen, N. M. Nielsen, K. T. Jørgensen, P. Bager et al., Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease, Gut, vol.60, pp.318-342, 2011.

M. Alvarez-lobos, D. P. Pizarro, C. E. Palavecino, A. Espinoza, V. P. Sebastián et al., Role of Salmonella enterica exposure in Chilean Crohn's disease patients, World J Gastroenterol, vol.19, pp.5855-62, 2013.

B. Stecher, S. Chaffron, R. Käppeli, S. Hapfelmeier, S. Freedrich et al., Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria, PLoS Pathog, vol.6, issue.1, p.1000711, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01518388

A. N. Honko and S. B. Mizel, Effects of flagellin on innate and adaptive immunity, Immunol Res, vol.33, pp.83-101, 2005.

D. Roggenbuck, G. Hausdorf, L. Martinez-gamboa, D. Reinhold, T. Büttner et al., Identification of GP2, the major zymogen granule membrane glycoprotein, as the autoantigen of pancreatic antibodies in Crohn's disease, Gut, vol.58, pp.1620-1628, 2009.

S. Vaishnava, C. L. Behrendt, A. S. Ismail, L. Eckmann, and L. V. Hooper, Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface, Proc Natl Acad Sci U S A, vol.105, pp.20858-63, 2008.

J. Wehkamp, Reduced Paneth cell alphadefensins in ileal Crohn's disease, Proc Natl Acad Sci U S A, vol.102, pp.18129-18163, 2005.

N. H. Salzman, M. M. Chou, H. De-jong, L. Liu, E. M. Porter et al., Enteric Salmonella infection inhibits Paneth cell antimicrobial peptide expression, Infect Immun, vol.71, issue.3, pp.1109-1124, 2003.

J. Begun, K. G. Lassen, H. B. Jijon, L. A. Baxt, G. Goel et al., Integrated genomics of Crohn's disease risk variant identifies a role for CLEC12A in antibacterial autophagy, Cell Rep, vol.11, pp.1905-1923, 2015.

N. R. Martinez-rodriguez, M. D. Eloi, A. Huynh, T. Dominguez, A. H. Lam et al., Expansion of Paneth cell population in response to enteric Salmonella enterica serovar Typhimurium infection, Infect Immun, vol.80, pp.266-75, 2012.

M. Gersemann, E. F. Stange, and J. Wehkamp, From intestinal stem cells to inflammatory bowel diseases, World J Gastroenterol, vol.17, pp.3198-203, 2011.

K. L. Conway, P. Kuballa, J. H. Song, K. K. Patel, A. B. Castoreno et al., Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection, Gastroenterology, vol.145, pp.1347-57, 2013.

L. C. Gomes and I. Dikic, Autophagy in antimicrobial immunity, Mol Cell, vol.54, pp.224-257, 2014.

P. Kuballa, A. Huett, J. D. Rioux, M. J. Daly, and R. J. Xavier, Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant, PLoS One, vol.3, issue.10, p.3391, 2008.

C. R. Homer, A. L. Richmond, N. A. Rebert, J. P. Achkar, and C. Mcdonald, ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis, Gastroenterology, vol.139, pp.1630-1671, 2010.

R. Cooney, J. Baker, O. Brain, B. Danis, T. Pichulik et al., NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation, Nat Med, vol.16, pp.90-97, 2010.

S. M. Bueno, P. A. González, L. J. Carreño, J. A. Tobar, G. C. Mora et al., The capacity of Salmonella to survive inside dendritic cells and prevent antigen presentation to T cells is host specific, Immunology, vol.124, pp.522-555, 2008.

S. Voedisch, C. Koenecke, S. David, H. Herbrand, R. Förster et al., Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice, Infect Immun, vol.77, pp.3170-80, 2009.

I. Godinez, M. Raffatellu, H. Chu, T. A. Paixão, T. Haneda et al., Interleukin-23 orchestrates mucosal responses to Salmonella enterica serotype Typhimurium in the intestine, Infect Immun, vol.77, pp.387-98, 2009.

B. Coburn, G. A. Grassl, and B. B. Finlay, Salmonella, the host and disease: a brief review, Immunol Cell Biol, vol.85, pp.112-120, 2007.