AnimalTFDB: a comprehensive animal transcription factor database, Nucleic Acids Res, vol.40, pp.144-153, 2012. ,
DOI : 10.1093/nar/gkr965
URL : https://academic.oup.com/nar/article-pdf/40/D1/D144/9483221/gkr965.pdf
Architecture of the human regulatory network derived from ENCODE data, Nature, vol.489, pp.91-100, 2012. ,
Recent advances in high-throughput approaches to dissect enhancer function, F1000Research, vol.6, p.939, 2017. ,
DOI : 10.12688/f1000research.11581.1
URL : https://hal.archives-ouvertes.fr/hal-01612096
Systematic dissection of genomic features determining transcription factor binding and enhancer function, Proc Natl Acad Sci U S A, vol.114, pp.1291-300, 2017. ,
DOI : 10.1073/pnas.1621150114
URL : https://www.pnas.org/content/pnas/114/7/E1291.full.pdf
The grammar of transcriptional regulation, Hum Genet, vol.133, pp.701-712, 2014. ,
Glucocorticoid receptor control of transcription: precision and plasticity via allostery, Nat Rev Mol Cell Biol, vol.18, pp.159-74, 2017. ,
DOI : 10.1038/nrm.2016.152
URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257982
Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor ? in mouse liver reveals extensive sharing of binding sites, Mol Cell Biol, vol.32, pp.852-67, 2012. ,
Effect of natural genetic variation on enhancer selection and function, Nature, vol.503, pp.487-92, 2013. ,
Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1, Nucleic Acids Res, vol.41, pp.6391-402, 2013. ,
Pioneer factors: directing transcriptional regulators within the chromatin environment, Trends Genet, vol.27, pp.465-74, 2011. ,
DOI : 10.1016/j.tig.2011.07.002
Pioneer transcription factors: establishing competence for gene expression, Genes Dev, vol.25, pp.2227-2268, 2011. ,
DOI : 10.1101/gad.176826.111
URL : http://genesdev.cshlp.org/content/25/21/2227.full.pdf
Effects of sequence variation on differential allelic transcription factor occupancy and gene expression, Genome Res, vol.22, pp.860-869, 2012. ,
Cooperativity and rapid evolution of cobound transcription factors in closely related mammals, Cell, vol.154, pp.530-570, 2013. ,
DOI : 10.1016/j.cell.2013.07.007
URL : https://doi.org/10.1016/j.cell.2013.07.007
Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis, Cell, vol.170, pp.875-888, 2017. ,
DOI : 10.1016/j.cell.2017.07.007
URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726277
Survey of variation in human transcription factors reveals prevalent DNA binding changes, Science, vol.351, pp.1450-1454, 2016. ,
Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo, Nat Genet, vol.47, pp.1393-401, 2015. ,
Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations, Cancer Discov, vol.6, pp.1215-1244, 2016. ,
The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions ,
, Genome Res, vol.27, pp.985-96, 2017.
Modular combinatorial binding among human trans-acting factors reveals direct and indirect factor binding, BMC Genomics, vol.18, p.45, 2017. ,
DOI : 10.1101/027953
URL : https://www.biorxiv.org/content/biorxiv/early/2015/09/30/027953.full.pdf
Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression, Nat Genet, vol.44, pp.1191-1199, 2012. ,
Noncoding somatic and inherited singlenucleotide variants converge to promote ESR1 expression in breast cancer, Nat Genet, vol.48, pp.1260-1266, 2016. ,
DOI : 10.1038/ng.3650
URL : http://europepmc.org/articles/pmc5042848?pdf=render
PERFECTOS-APE -Predicting Regulatory Functional Effect of SNPs by Approximate P-value Estimation, pp.102-110, 2017. ,
Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome, Cell, vol.151, pp.994-1004, 2012. ,
Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions, Cell, vol.165, pp.593-605, 2016. ,
DOI : 10.1016/j.cell.2016.02.067
URL : https://doi.org/10.1016/j.cell.2016.02.067
SMiLE-seq identifies binding motifs of single and dimeric transcription factors, Nat Methods, vol.14, pp.316-338, 2017. ,
DOI : 10.1038/nmeth.4143
DNA-dependent formation of transcription factor pairs alters their binding specificity, Nature, vol.527, pp.384-392, 2015. ,
DOI : 10.1038/nature15518
An expansive human regulatory lexicon encoded in transcription factor footprints, Nature, vol.489, pp.83-90, 2012. ,
DOI : 10.1038/nature11212
URL : https://www.nature.com/articles/nature11212.pdf
Topology of mammalian developmental enhancers and their regulatory landscapes, Nature, vol.502, pp.499-506, 2013. ,
, Situ Capture of Chromatin Interactions by Biotinylated dCas9, vol.170, pp.1028-1043, 2017.
DOI : 10.1016/j.cell.2017.08.003
HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models, Nucleic Acids Res, vol.44, pp.116-125, 2016. ,
R: A language and environment for statistical computing. R Found Stat Comput ,
gplots: Various R Programming Tools for Plotting Data ,
RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections, Nucleic Acids Res, vol.45, p.119, 2017. ,
URL : https://hal.archives-ouvertes.fr/hal-01624366
, Col cluster_4 Collection_1_m83_TEAD4_MOUSE.H10MO.D,Collection_1_m82_TBP_MOUSE.H10MO.C,Collection_1_m52_MEF2A_MOUSE.H10MO.B,Collection_1_m53_MEF2C_MOUSE.H10MO.B,Collection_1_m54_MEF2D_MOUSE.H10MO.C cluster_5