G. Paz-bailey, M. Ramaswamy, S. J. Hawkes, and A. M. Geretti, Herpes simplex virus type 2: epidemiology and management options in developing countries, Sex Transm Infect, vol.83, issue.1, pp.16-22, 2007.

J. S. Smith and N. J. Robinson, Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review, J Infect Dis, issue.1, p.186, 2002.

K. J. Looker, A. S. Magaret, M. T. May, K. Turner, P. Vickerman et al., Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012, PLoS One, vol.10, issue.10, p.140765, 2015.

Z. A. Brown, S. Selke, J. Zeh, J. Kopelman, A. Maslow et al., The acquisition of herpes simplex virus during pregnancy, N Engl J Med, vol.337, issue.8, pp.509-524, 1997.

K. N. Ward, A. Ohrling, N. J. Bryant, J. S. Bowley, E. M. Ross et al., Herpes simplex serious neurological disease in young children: incidence and long-term outcome, Arch Dis Child, vol.97, issue.2, pp.162-167, 2012.

I. Steiner and F. Benninger, Update on herpes virus infections of the nervous system, Curr Neurol Neurosci Rep, vol.13, issue.12, p.414, 2013.

L. Corey, Synergistic copathogens -HIV-1 and HSV-2, N Engl J Med, vol.356, issue.8, pp.854-860, 2007.
DOI : 10.1056/nejme068302

C. Celum, A. Wald, J. R. Lingappa, A. S. Magaret, R. S. Wang et al., Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2, N Engl J Med, vol.362, issue.5, pp.427-466, 2010.

E. E. Freeman, H. A. Weiss, J. R. Glynn, P. L. Cross, J. A. Whitworth et al., Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies, AIDS, vol.20, issue.1, pp.73-83, 2006.

P. A. Suazo, E. I. Tognarelli, A. M. Kalergis, and P. A. Gonzalez, Herpes simplex virus 2 infection: molecular association with HIV and novel microbicides to prevent disease, Med Microbiol Immunol, vol.204, issue.2, pp.161-76, 2015.

A. Wald and K. Link, Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis, J Infect Dis, vol.185, issue.1, pp.45-52, 2002.

C. Johnston, M. Saracino, S. Kuntz, A. Magaret, S. Selke et al., Standard-dose and high-dose daily antiviral therapy for short episodes of genital HSV-2 reactivation: three randomised, open-label, cross-over trials, Lancet, vol.379, issue.9816, pp.61750-61759, 2012.

R. J. Whitley and J. W. Gnann, Acyclovir: a decade later, N Engl J Med, vol.327, issue.11, pp.782-791, 1992.

H. Shin and A. Iwasaki, Generating protective immunity against genital herpes, Trends Immunol, vol.34, issue.10, pp.487-94, 2013.

S. Awasthi and H. M. Friedman, Status of prophylactic and therapeutic genital herpes vaccines, Curr Opin Virol, vol.6, pp.6-12, 2014.

D. I. Bernstein, F. Y. Aoki, S. K. Tyring, L. R. Stanberry, C. St-pierre et al., Safety and immunogenicity of glycoprotein D-adjuvant genital herpes vaccine, Clin Infect Dis, vol.40, issue.9, pp.1271-81, 2005.

N. Cheshenko, J. B. Trepanier, M. Stefanidou, N. Buckley, P. Gonzalez et al., HSV activates Akt to trigger calcium release and promote viral entry: novel candidate target for treatment and suppression, FASEB J, vol.27, issue.7, pp.2584-99, 2013.

D. C. Johnson and J. D. Baines, Herpesviruses remodel host membranes for virus egress, Nat Rev Microbiol, vol.9, issue.5, pp.382-94, 2011.

S. Salameh, U. Sheth, and D. Shukla, Early events in herpes simplex virus lifecycle with implications for an infection of lifetime, Open Virol J, vol.6, pp.1-6, 2012.

A. V. Nicola, S. H. Willis, N. N. Naidoo, R. J. Eisenberg, and G. H. Cohen, Structurefunction analysis of soluble forms of herpes simplex virus glycoprotein D, J Virol, vol.70, issue.6, pp.3815-3837, 1996.

T. M. Cairns, Z. Y. Huang, J. C. Whitbeck, M. Ponce-de-leon, H. Lou et al., Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans, J Virol, vol.88, issue.21, pp.12612-12634, 2014.

R. B. Belshe, P. A. Leone, D. I. Bernstein, W. A. Levin, M. J. Stapleton et al., Efficacy results of a trial of a herpes simplex vaccine, N Engl J Med, vol.366, issue.1, pp.34-43, 2012.

L. Corey, A. G. Langenberg, R. Ashley, R. E. Sekulovich, A. E. Izu et al., Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group, JAMA, vol.282, issue.4, pp.331-371, 1999.

S. Kohl, E. D. Charlebois, M. Sigouroudinia, C. Goldbeck, K. Hartog et al., Limited antibody-dependent cellular cytotoxicity antibody response induced by a herpes simplex virus type 2 subunit vaccine, J Infect Dis, vol.181, issue.1, pp.335-344, 2000.
DOI : 10.1086/315208

URL : https://academic.oup.com/jid/article-pdf/181/1/335/17995701/181-1-335.pdf

G. J. Mertz, R. Ashley, R. L. Burke, J. Benedetti, C. Critchlow et al., Double-blind, placebo-controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection, J Infect Dis, vol.161, issue.4, pp.653-60, 1990.

X. P. Zhu, Z. S. Muhammad, J. G. Wang, W. Lin, S. K. Guo et al., HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine, Viruses, vol.6, issue.2, pp.371-90, 2014.

A. R. Retamal-díaz, P. A. Suazo, I. Garrido, A. M. Kalergis, and P. A. González, Immune evasion by herpes simplex viruses, Rev Chil Infectol, vol.32, issue.1, pp.58-70, 2015.

T. M. Cairns, Z. Y. Huang, J. R. Gallagher, Y. Lin, H. Lou et al., Patient-specific neutralizing antibody responses to herpes simplex virus are attributed to epitopes on gD, gB, or both and can be type specific, J Virol, vol.89, issue.18, pp.9213-9244, 2015.

A. R. Retamal-díaz, E. Tognarelli, A. M. Kalergis, S. M. Bueno, and P. A. González, Immune evasion by herpes simplex viruses, herpesviridae, pp.105-151, 2016.

M. Quinlivan and J. Breuer, Clinical and molecular aspects of the live attenuated Oka varicella vaccine, Rev Med Virol, vol.24, issue.4, pp.254-73, 2014.

M. Quinlivan, J. Breuer, and D. S. Schmid, Molecular studies of the Oka varicella vaccine, Expert Rev Vaccines, vol.10, issue.9, pp.1321-1357, 2011.

M. Marin, M. Marti, A. Kambhampati, S. M. Jeram, and J. F. Seward, Global varicella vaccine effectiveness: a meta-analysis, Pediatrics, vol.137, issue.3, p.20153741, 2016.

A. L. Cunningham, The herpes zoster subunit vaccine, Expert Opin Biol Ther, vol.16, issue.2, pp.265-71, 2016.

W. P. Halford, R. Puschel, E. Gershburg, A. Wilber, S. Gershburg et al., A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine, PLoS One, vol.6, issue.3, p.17748, 2011.
DOI : 10.1371/journal.pone.0017748

W. P. Halford, J. Geltz, R. J. Messer, and K. J. Hasenkrug, Antibodies are required for complete vaccine-induced protection against herpes simplex virus 2, PLoS One, vol.10, issue.12, p.145228, 2015.
DOI : 10.1371/journal.pone.0145228

J. J. Geltz, E. Gershburg, and W. P. Halford, Herpes simplex virus 2 (HSV-2) infected cell proteins are among the most dominant antigens of a live-attenuated HSV-2 vaccine, PLoS One, vol.10, issue.2, p.116091, 2015.

D. Costa, X. Kramer, M. F. Zhu, J. Brockman, M. A. Knipe et al., Construction, phenotypic analysis, and immunogenicity of a UL5/UL29 double deletion mutant of herpes simplex virus 2, J Virol, vol.74, issue.17, pp.7963-71, 2000.

S. T. Mundle, H. Hernandez, J. Hamberger, J. Catalan, C. Zhou et al., High-purity preparation of HSV-2 vaccine candidate ACAM529 is immunogenic and efficacious in vivo, PLoS One, vol.8, issue.2, p.57224, 2013.

F. M. Diaz and D. M. Knipe, Protection from genital herpes disease, seroconversion and latent infection in a non-lethal murine genital infection model by immunization with an HSV-2 replication-defective mutant virus, Virology, vol.488, pp.61-68, 2016.

G. Casanova, R. Cancela, L. Alonzo, and R. Benuto, A double-blind study of the efficacy and safety of the ICP10PK vaccine against recurrent genital HSV-2 infections, Cutis, 2002.

L. Aurelian, H. Kokuba, and C. C. Smith, Vaccine potential of a herpes simplex virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10), Vaccine, vol.17, pp.470-478, 1999.

T. Gyotoku, F. Ono, and L. Aurelian, Development of HSV-specific CD4+ Th1 responses and CD8+ cytotoxic T lymphocytes with antiviral activity by vaccination with the HSV-2 mutant ICP10DeltaPK, Vaccine, pp.2796-807, 2002.

M. Wachsman, M. Kulka, C. C. Smith, and L. Aurelian, A growth and latency compromised herpes simplex virus type 2 mutant (ICP10DeltaPK) has prophylactic and therapeutic protective activity in guinea pigs, Vaccine, vol.19, pp.1879-90, 2001.

K. Wang, K. N. Goodman, D. Y. Li, M. Raffeld, M. Chavez et al., A herpes simplex virus 2 (HSV-2) gD mutant impaired for neural tropism is superior to an HSV-2 gD subunit vaccine to protect animals from challenge with HSV-2, J Virol, vol.90, issue.1, pp.562-74, 2015.

S. Awasthi, E. E. Zumbrun, H. Si, F. Wang, C. E. Shaw et al., Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread, J Virol, vol.86, issue.8, pp.4586-98, 2012.

B. A. Stanfield, B. Pahar, V. N. Chouljenko, R. Veazey, and K. G. Kousoulas, Vaccination of rhesus macaques with the live-attenuated HSV-1 vaccine VC2 stimulates the proliferation of mucosal T cells and germinal center responses resulting in sustained production of highly neutralizing antibodies, vol.35, pp.536-579, 2017.

M. N. Prichard, R. Kaiwar, W. T. Jackman, D. C. Quenelle, D. J. Collins et al., Evaluation of AD472, a live attenuated recombinant herpes simplex virus type 2 vaccine in guinea pigs, Vaccine, vol.23, pp.5424-5455, 2005.

F. C. Spector, E. R. Kern, J. Palmer, R. Kaiwar, T. Cha et al., Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs, J Infect Dis, vol.177, issue.5, pp.1143-54, 1998.

C. Petro, P. A. Gonzalez, N. Cheshenko, T. Jandl, N. Khajoueinejad et al., Herpes simplex type 2 virus deleted in glycoprotein D protects against vaginal, skin and neural disease, Elife, vol.4, p.6054, 2015.

C. D. Petro, B. Weinrick, N. Khajoueinejad, C. Burn, R. Sellers et al., HSV-2 DeltagD elicits FcgammaR-effector antibodies that protect against clinical isolates, JCI Insight, vol.1, issue.12, p.88529, 2016.
DOI : 10.1172/jci.insight.88529

URL : http://insight.jci.org/articles/view/88529/files/pdf

M. R. Mcdermott, J. R. Smiley, P. Leslie, J. Brais, H. E. Rudzroga et al., Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2, J Virol, vol.51, issue.3, pp.747-53, 1984.

H. Shin and A. Iwasaki, A vaccine strategy that protects against genital herpes by establishing local memory T cells, Nature, vol.491, issue.7424, pp.463-470, 2012.

M. E. Boursnell, C. Entwisle, D. Blakeley, C. Roberts, I. A. Duncan et al., A genetically inactivated herpes simplex virus type 2 (HSV-2) vaccine provides effective protection against primary and recurrent HSV-2 disease, J Infect Dis, vol.175, issue.1, pp.16-25, 1997.

G. De-bruyn, M. Vargas-cortez, T. Warren, S. K. Tyring, K. H. Fife et al., A randomized controlled trial of a replication defective (gH deletion) herpes simplex virus vaccine for the treatment of recurrent genital herpes among immunocompetent subjects, Vaccine, vol.24, issue.7, pp.914-934, 2006.

D. Costa, X. J. Jones, C. A. Knipe, and D. M. , Immunization against genital herpes with a vaccine virus that has defects in productive and latent infection, Proc Natl Acad Sci U S A, vol.96, issue.12, pp.6994-7002, 1999.

Y. Hoshino, S. K. Dalai, K. Wang, L. Pesnicak, T. Y. Lau et al., Comparative efficacy and immunogenicity of replication-defective, recombinant glycoprotein, and DNA vaccines for herpes simplex virus 2 infections in mice and guinea pigs, J Virol, vol.79, issue.1, pp.410-418, 2005.

W. P. Halford, R. Puschel, and B. Rakowski, Herpes simplex virus 2 ICP0 mutant viruses are avirulent and immunogenic: implications for a genital herpes vaccine, PLoS One, vol.5, issue.8, p.12251, 2010.

S. La, J. Kim, B. S. Kwon, and B. Kwon, Herpes simplex virus type 1 glycoprotein D inhibits T-cell proliferation, Mol Cells, vol.14, issue.3, pp.398-403, 2002.

Y. Yang, S. Wu, Y. Wang, S. Pan, B. Lan et al., The Us3 protein of herpes simplex virus 1 inhibits T cell signaling by confining linker for activation of T cells (LAT) activation via TRAF6 protein, J Biol Chem, issue.25, pp.15670-15678, 2015.

D. D. Sloan, J. Y. Han, T. K. Sandifer, M. Stewart, A. J. Hinz et al., Inhibition of TCR signaling by herpes simplex virus, J Immunol, vol.176, issue.3, pp.1825-1858, 2006.

M. J. Vanden-oever and J. Y. Han, Caspase 9 is essential for herpes simplex virus type 2-induced apoptosis in T cells, J Virol, vol.84, issue.6, pp.3116-3136, 2010.

K. Grauwet, C. Cantoni, M. Parodi, D. Maria, A. Devriendt et al., Modulation of CD112 by the alphaherpesvirus gD protein suppresses DNAM-1-dependent NK cell-mediated lysis of infected cells, Proc Natl Acad Sci U S A, vol.111, issue.45, pp.16118-16141, 2014.

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of dendritic cells, Annu Rev Immunol, vol.18, pp.767-811, 2000.

D. Duluc, J. Gannevat, H. Joo, L. Ni, K. Upchurch et al., Dendritic cells and vaccine design for sexually-transmitted diseases, Microb Pathog, vol.58, pp.35-44, 2013.

E. S. Trombetta and I. Mellman, Cell biology of antigen processing in vitro and in vivo, Annu Rev Immunol, vol.23, pp.975-1028, 2005.

R. M. Steinman and H. Hemmi, Dendritic cells: translating innate to adaptive immunity, Curr Top Microbiol Immunol, vol.311, pp.17-58, 2006.
DOI : 10.1007/3-540-32636-7_2

URL : http://bilder.buecher.de/zusatz/20/20793/20793145_lese_1.pdf

P. A. Gonzalez, L. J. Carreno, C. A. Figueroa, and A. M. Kalergis, Modulation of immunological synapse by membrane-bound and soluble ligands, Cytokine Growth Factor Rev, vol.18, issue.1-2, pp.19-31, 2007.

T. R. Mempel, S. E. Henrickson, V. Andrian, and U. H. , T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases, Nature, vol.427, issue.6970, pp.154-163, 2004.

S. M. Bueno, S. Riquelme, C. A. Riedel, and A. M. Kalergis, Mechanisms used by virulent Salmonella to impair dendritic cell function and evade adaptive immunity, Immunology, vol.137, issue.1, pp.28-36, 2012.

M. Moutaftsi, A. M. Mehl, L. K. Borysiewicz, and Z. Tabi, Human cytomegalovirus inhibits maturation and impairs function of monocyte-derived dendritic cells, Blood, issue.8, pp.2913-2934, 2002.

P. A. Gonzalez, C. E. Prado, E. D. Leiva, L. J. Carreno, S. M. Bueno et al., Respiratory syncytial virus impairs T cell activation by preventing synapse assembly with dendritic cells, Proc Natl Acad Sci U S A, issue.39, pp.14999-5004, 2008.

M. Stefanidou, I. Ramos, M. Casullo, V. Trepanier, J. B. Rosenbaum et al., Herpes simplex virus 2 (HSV-2) prevents dendritic cell maturation, induces apoptosis, and triggers release of proinflammatory cytokines: potential links to HSV-HIV synergy, J Virol, vol.87, issue.3, pp.1443-53, 2013.

M. J. Raftery, F. Winau, S. H. Kaufmann, U. E. Schaible, and G. Schonrich, CD1 antigen presentation by human dendritic cells as a target for herpes simplex virus immune evasion, J Immunol, vol.177, issue.9, p.6207, 2006.

P. A. Gobeil and D. A. Leib, Herpes simplex virus gamma34.5 interferes with autophagosome maturation and antigen presentation in dendritic cells, MBio, vol.3, issue.5, pp.267-212, 2012.

M. Elboim, I. Grodzovski, E. Djian, D. G. Wolf, and O. Mandelboim, HSV-2 specifically down regulates HLA-C expression to render HSV-2-infected DCs susceptible to NK cell killing, PLoS Pathog, vol.9, issue.3, p.1003226, 2013.

F. K. Puttur, M. A. Fernandez, R. White, B. Roediger, A. L. Cunningham et al., Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation, J Immunol, issue.1, pp.477-87, 2010.

A. Hill, P. Jugovic, I. York, G. Russ, J. Bennink et al., Herpes simplex virus turns off the TAP to evade host immunity, Nature, vol.375, issue.6530, pp.411-416, 1995.

L. Bosnjak, M. Miranda-saksena, D. M. Koelle, R. A. Boadle, C. A. Jones et al., Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells, J Immunol, vol.174, issue.4, pp.2220-2227, 2005.

B. Wu, S. Geng, Y. Bi, H. Liu, Y. Hu et al., Herpes simplex virus 1 suppresses the function of lung dendritic cells via caveolin-1, Clin Vaccine Immunol, vol.22, issue.8, pp.883-95, 2015.

C. A. Jones, M. Fernandez, K. Herc, L. Bosnjak, M. Miranda-saksena et al., Herpes simplex virus type 2 induces rapid cell death and functional impairment of murine dendritic cells in vitro, J Virol, vol.77, pp.11139-11188, 1920.

Y. Ma, M. Chen, H. Jin, B. S. Prabhakar, T. Valyi-nagy et al., An engineered herpesvirus activates dendritic cells and induces protective immunity, vol.7, p.41461, 2017.
DOI : 10.1038/srep41461

URL : https://www.nature.com/articles/srep41461.pdf

A. Dolan, F. E. Jamieson, C. Cunningham, B. C. Barnett, and D. J. Mcgeoch, The genome sequence of herpes simplex virus type 2, J Virol, vol.72, issue.3, pp.2010-2031, 1998.

K. R. Mott, S. J. Allen, M. Zandian, O. Akbari, P. Hamrah et al., Inclusion of CD80 in HSV targets the recombinant virus to PD-L1 on DCs and allows productive infection and robust immune responses, PLoS One, vol.9, issue.1, p.87617, 2014.

A. Reske, G. Pollara, C. Krummenacher, D. R. Katz, and B. M. Chain, Glycoproteindependent and TLR2-independent innate immune recognition of herpes simplex virus-1 by dendritic cells, J Immunol, vol.180, issue.11, pp.7525-7561, 2008.

D. R. Verboogen, I. Dingjan, N. H. Revelo, L. J. Visser, M. Ter-beest et al., The dendritic cell side of the immunological synapse, Biomol Concepts, vol.7, issue.1, pp.17-28, 2016.

K. C. Sheng, G. A. Pietersz, C. K. Tang, P. A. Ramsland, and V. Apostolopoulos, Reactive oxygen species level defines two functionally distinctive stages of inflammatory dendritic cell development from mouse bone marrow, J Immunol, issue.6, pp.2863-72, 2010.

J. H. Wyckoff, . Iii, A. P. Osmand, R. J. Eisenberg, G. H. Cohen et al., Functional T cell recognition of synthetic peptides corresponding to continuous antibody epitopes of herpes simplex virus type 1 glycoprotein D, Immunobiology, vol.177, issue.2, pp.134-182, 1988.

D. Long, M. Skoberne, T. M. Gierahn, S. Larson, J. A. Price et al., Identification of novel virus-specific antigens by CD4(+) and CD8(+) T cells from asymptomatic HSV-2 seropositive and seronegative donors, Virology, vol.46, pp.296-311, 2014.

A. A. Khan, R. Srivastava, A. A. Chentoufi, R. Geertsema, N. T. Thai et al., Therapeutic immunization with a mixture of herpes simplex virus 1 glycoprotein D-derived "asymptomatic" human CD8+ T-cell epitopes decreases spontaneous ocular shedding in latently infected HLA transgenic rabbits: association with low frequency of local PD-1+ TIM-3+ CD8+ exhausted T cells, J Virol, vol.89, issue.13, pp.6619-6651, 2015.

W. J. Muller, L. Dong, A. Vilalta, B. Byrd, K. M. Wilhelm et al., Herpes simplex virus type 2 tegument proteins contain subdominant T-cell epitopes detectable in BALB/c mice after DNA immunization and infection, J Gen Virol, pp.1153-63, 2009.

A. J. St-leger, B. Peters, J. Sidney, A. Sette, and R. L. Hendricks, Defining the herpes simplex virus-specific CD8+ T cell repertoire in C57BL/6 mice, J Immunol, vol.186, issue.7, pp.3927-3960, 2011.

R. J. Platt, T. Khodai, T. J. Townend, H. H. Bright, P. Cockle et al., CD8+ T lymphocyte epitopes from the herpes simplex virus type 2 ICP27, VP22 and VP13/14 proteins to facilitate vaccine design and characterization, Cells, vol.2, issue.1, pp.19-42, 2013.

S. Peretti, A. Shaw, J. Blanchard, R. Bohm, G. Morrow et al., Immunomodulatory effects of HSV-2 infection on immature macaque dendritic cells modify innate and adaptive responses, Blood, vol.106, issue.4, pp.1305-1318, 2005.

P. R. Rogers, J. Song, I. Gramaglia, N. Killeen, and M. Croft, OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells, Immunity, vol.15, issue.3, pp.445-55, 2001.

A. R. Weatherill, J. R. Maxwell, C. Takahashi, A. D. Weinberg, and A. T. Vella, OX40 ligation enhances cell cycle turnover of Ag-activated CD4 T cells in vivo, Cell Immunol, vol.209, issue.1, pp.63-75, 2001.

A. D. Holdorf, O. Kanagawa, and A. S. Shaw, CD28 and T cell co-stimulation, Rev Immunogenet, vol.2, issue.2, pp.175-84, 2000.

N. J. Borthwick, M. Lowdell, M. Salmon, and A. N. Akbar, Loss of CD28 expression on CD8(+) T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis, Int Immunol, vol.12, issue.7, pp.1005-1018, 2000.

M. Habib-agahi, T. T. Phan, and P. F. Searle, Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells, Int Immunol, vol.19, issue.12, pp.1383-94, 2007.

S. N. Mueller, W. R. Heath, J. D. Mclain, F. R. Carbone, and C. M. Jones, Characterization of two TCR transgenic mouse lines specific for herpes simplex virus, Immunol Cell Biol, vol.80, issue.2, pp.156-63, 2002.

S. Bedoui, P. G. Whitney, J. Waithman, L. Eidsmo, L. Wakim et al., Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells, Nat Immunol, vol.10, issue.5, pp.488-95, 2009.

M. Kim, N. R. Truong, V. James, L. Bosnjak, K. J. Sandgren et al., Relay of herpes simplex virus between Langerhans cells and dermal dendritic cells in human skin, PLoS Pathog, vol.11, issue.4, p.1004812, 2015.

X. Zhao, E. Deak, K. Soderberg, M. Linehan, D. Spezzano et al., Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2, J Exp Med, vol.197, issue.2, pp.153-62, 2003.

V. P. Bollampalli, S. Nylén, and A. G. Rothfuchs, A CFSE-based assay to study the migration of murine skin dendritic cells into draining lymph nodes during infection with Mycobacterium bovis bacille Calmette-Guérin, J Vis Exp, issue.116, 2016.

J. L. Hor, P. G. Whitney, A. Zaid, A. G. Brooks, W. R. Heath et al., Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection, Immunity, vol.43, issue.3, pp.554-65, 2015.

G. T. Belz, N. S. Wilson, C. M. Smith, A. M. Mount, F. R. Carbone et al., Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin, Eur J Immunol, vol.36, issue.2, pp.327-362, 2006.

M. B. Lutz, N. Kukutsch, A. L. Ogilvie, S. Rossner, F. Koch et al., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, J Immunol Methods, vol.223, issue.1, pp.77-92, 1999.

K. Inaba, M. Inaba, N. Romani, H. Aya, M. Deguchi et al., Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor, J Exp Med, vol.176, issue.6, pp.1693-702, 1992.

G. Schlecht, J. Mouries, M. Poitrasson-riviere, C. Leclerc, and G. Dadaglio, Purification of splenic dendritic cells induces maturation and capacity to stimulate Th1 response in vivo, Int Immunol, vol.18, issue.3, pp.445-52, 2006.

M. De-heusch, G. Oldenhove, J. Urbain, K. Thielemans, C. Maliszewski et al., Depending on their maturation state, splenic dendritic cells induce the differentiation of CD4(+) T lymphocytes into memory and/or effector cells in vivo, Eur J Immunol, vol.34, issue.7, pp.1861-1870, 2004.

A. Lau, V. Singh, H. Soualhine, and Z. Hmama, Expression of Cathepsin S in BCG converts it into a pro-apoptotic and highly immunogenic strain, vol.35, pp.2060-2068, 2017.

G. Li, G. Liu, N. Song, C. Kong, Q. Huang et al., A novel recombinant BCG-expressing pro-apoptotic protein BAX enhances Th1 protective immune responses in mice, Mol Immunol, vol.66, issue.2, pp.346-56, 2015.

M. Gengenbacher, N. Nieuwenhuizen, A. Vogelzang, H. Liu, P. Kaiser et al., Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG DeltaureC:hly improves protection against tuberculosis, MBio, vol.7, issue.3, pp.679-616, 2016.