D. R. Cox, Regression models and life-tables (with discussion), Journal of the Royal Statistical Society, 1972.
DOI : 10.1111/j.2517-6161.1972.tb00899.x

B. , , pp.187-220

P. C. Austin, An introduction to propensity score methods for reducing the effects of confounding in observational studies, Multivariate Behavioral Research, vol.46, issue.3, pp.399-424, 2011.

P. R. Rosenbaum and D. B. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika, vol.70, issue.1, pp.41-55, 1983.

P. C. Austin, A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality, Multivariate Behavioral Research, vol.46, issue.1, pp.119-151, 2011.

P. C. Austin and T. Schuster, The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: a simulation study, Statistical Methods in Medical Research, 2014.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

J. M. Robins, M. A. Hernán, and B. Brumback, Marginal structural models and causal inference in epidemiology, Epidemiology, vol.11, issue.5, pp.550-560, 2000.
DOI : 10.1097/00001648-200009000-00011

S. Xu, C. Ross, M. A. Raebel, S. Shetterly, C. Blanchette et al., Use of stabilized inverse propensity scores as weights to directly estimate relative risk and its confidence intervals, Value in Health, vol.13, issue.2, pp.273-277, 2010.
DOI : 10.1111/j.1524-4733.2009.00671.x

URL : https://doi.org/10.1111/j.1524-4733.2009.00671.x

C. Liu, J. Xie, and Y. Zhang, Weighted nonparametric maximum likelihood estimate of a mixing distribution in nonrandomized clinical trials, Statistics in Medicine, vol.26, issue.29, pp.5303-5319, 2007.

J. Xie and C. Liu, Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data, Statistics in Medicine, vol.24, issue.10, pp.3089-3110, 2005.

M. Sugihara, Survival analysis using inverse probability of treatment weighted methods based on the generalized propensity score, Pharmaceutical Statistics, vol.9, issue.1, pp.21-34, 2010.

D. Y. Lin and L. J. Wei, The robust inference for the Cox proportional hazards model, Journal of the American Statistical Association, vol.84, issue.408, pp.1074-1078, 1989.
DOI : 10.1080/01621459.1989.10478874

S. R. Cole and M. A. Hernán, Adjusted survival curves with inverse probability weights, Computer Methods and Programs in Biomedicine, vol.75, issue.1, pp.45-49, 2004.

P. R. Rosenbaum and D. B. Rubin, Constructing a control group using multivariate matched sampling methods that incorporate the propensity score, The American Statistician, vol.39, issue.1, p.33, 1985.
DOI : 10.1080/00031305.1985.10479383

P. C. Austin, Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies, Pharmaceutical Statistics, vol.10, issue.2, pp.150-161, 2011.

Y. Wang, H. Cai, C. Li, Z. Jiang, L. Wang et al., Optimal caliper width for propensity score matching of three treatment groups: A Monte Carlo study, PLoS ONE, vol.8, issue.12, p.81045, 2013.

D. E. Ho, K. Imai, G. King, and E. A. Stuart, MatchIt: Nonparametric preprocessing for parametric causal inference, Journal of Statistical Software, vol.42, issue.8, pp.1-28, 2011.
DOI : 10.18637/jss.v042.i08

URL : https://www.jstatsoft.org/index.php/jss/article/view/v042i08/v42i08.pdf

F. K. Port, J. L. Bragg-gresham, R. A. Metzger, D. M. Dykstra, B. W. Gillespie et al., Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors, Transplantation, vol.74, issue.9, pp.1281-1286, 2002.

C. Praehauser, P. Hirt-minkowski, S. Bakar, K. Amico, P. Vogler et al., Risk factors and outcome of expanded-criteria donor kidney transplants in patients with low immunological risk, Swiss Medical Weekly Wkly, vol.143, p.13883, 2013.

S. K. Singh and S. J. Kim, Does expanded criteria donor status modify the outcomes of kidney transplantation from donors after cardiac death?, American Journal of Transplantation, vol.13, issue.2, pp.329-336, 2013.
DOI : 10.1111/j.1600-6143.2012.04311.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-6143.2012.04311.x

R. S. Sung, M. K. Guidinger, A. B. Leichtman, C. Lake, R. A. Metzger et al., Impact of the expanded criteria donor allocation system on candidates for and recipients of expanded criteria donor kidneys, Transplantation, vol.84, issue.9, pp.1138-1144, 2007.

R. J. Stratta, M. S. Rohr, A. K. Sundberg, G. Armstrong, G. Hairston et al., Increased kidney transplantation utilizing expanded criteria deceased organ donors with results comparable to standard criteria donor transplant, Annals of Surgery, vol.239, issue.5, pp.688-697, 2004.
DOI : 10.1097/01.sla.0000124296.46712.67

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356277

L. Roels and A. Rahmel, The European experience, Transplant International, vol.24, issue.4, pp.350-367, 2011.

D. Fijter and J. W. , An old virtue to improve senior programs, Transplant International, vol.22, issue.3, pp.259-268, 2009.

R. Tibshirani, The lasso method for variable selection in the Cox model, Statistics in Medicine, vol.16, issue.4, pp.385-395, 1997.

M. A. Brookhart, S. Schneeweiss, K. J. Rothman, R. J. Glynn, J. Avorn et al., Variable delection for propensity score models, American Journal of Epidemiology, vol.163, issue.12, pp.1149-1156, 2006.
DOI : 10.1093/aje/kwj149

URL : https://academic.oup.com/aje/article-pdf/163/12/1149/223159/kwj149.pdf

P. C. Austin, P. Grootendorst, and G. M. Anderson, A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study, Statistics in Medicine, vol.26, issue.4, pp.734-753, 2007.

M. Giral, Y. Foucher, G. Karam, Y. Labrune, M. Kessler et al., Kidney and recipient weight incompatibility reduces long-term graft survival, Journal of the American Society of Nephrology, vol.21, issue.6, pp.1022-1029, 2010.
DOI : 10.1681/asn.2009121296

URL : https://jasn.asnjournals.org/content/jnephrol/21/6/1022.full.pdf

P. K. Andersen and M. P. Perme, Pseudo-observations in survival analysis, Statistical Methods in Medical Research, vol.19, issue.1, pp.71-99, 2010.
DOI : 10.1177/0962280209105020

J. K. Lunceford and M. Davidian, Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study, Statistics in Medicine, vol.23, pp.2937-2960, 2004.

S. Xu, S. Shetterly, D. Powers, M. A. Raebel, T. Tsai et al., Extension of Kaplan-Meier methods in observational studies with time-varying treatment, Value in Health, vol.15, issue.1, pp.167-174, 2012.

W. A. Ghali, H. Quan, R. Brant, G. Van-melle, C. M. Norris et al., APPROACH (Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease) Investigators. Comparison of 2 methods for calculating adjusted survival curves from proportional hazards models, JAMA, vol.286, issue.12, pp.1494-1497, 2001.

F. J. Nieto and J. Coresh, Adjusting survival curves for confounders: a review and a new 'method, American Journal of Epidemiology, vol.143, issue.10, pp.1059-1068, 1996.
DOI : 10.1093/oxfordjournals.aje.a008670

URL : https://academic.oup.com/aje/article-pdf/143/10/1059/196176/143-10-1059.pdf

B. L. Thomsen, N. Keiding, and D. G. Altman, A note on the calculation of expected survival, illustrated by the survival of liver transplant patients, Statistics in Medicine, vol.10, issue.5, pp.733-738, 1991.

R. Simon and N. R. Simon, Using randomization tests to preserve type I error with response-adaptive and covariate-adaptive randomization, Statistics & probability letters, vol.81, issue.7, pp.767-772, 2011.
DOI : 10.1016/j.spl.2010.12.018

URL : http://europepmc.org/articles/pmc3137591?pdf=render

V. W. Berger, Pros and cons of permutation tests in clinical trials, Statistics in Medicine, vol.19, issue.10, pp.1319-1328, 2000.

Q. Pan and D. E. Schaubel, Proportional hazards models based on biased samples and estimated selection probabilities, Canadian Journal of Statistics, vol.36, issue.1, pp.111-127, 2008.
DOI : 10.1002/cjs.5550360111

S. L. Spruance, J. E. Reid, M. Grace, and M. Samore, Hazard ratio in clinical trials, Antimicrobial Agents and Chemotherapy, vol.48, issue.8, pp.2787-2792, 2004.
DOI : 10.1128/aac.48.8.2787-2792.2004

URL : https://aac.asm.org/content/48/8/2787.full.pdf

©. Copyright, Ltd. Statist. Med, vol.35, pp.1103-1116, 2015.

C. Combescure, T. V. Perneger, D. C. Weber, J. P. Daurès, and Y. Foucher, Prognostic ROC curves: a method for representing the overall discriminative capacity of binary markers with right-censored time-to-event endpoints, Epidemiology, vol.25, issue.1, pp.103-109, 2014.

M. A. Hernán, The Hazards of Hazard Ratios, Epidemiology, vol.21, issue.1, pp.13-15, 2010.