L. W. Manji-ra and C. Dk, Xenograft bioprosthetic heart valves: Past, present and future, Int J Surg, vol.23, pp.280-284, 2015.

D. Jl, P. Bd, C. Jb, R. Sg, and . Bridgewater-b, Valvular heart disease: the next cardiac epidemic, Heart, vol.97, pp.91-93, 2011.

S. Suri-rm and . Hv, Selection of aortic valve prostheses: contemporary reappraisal of mechanical versus biologic valve substitutes, Circulation, vol.128, pp.1372-1380, 2013.

J. Chikwe, E. Chiang-yp, . Nn, S. Itagaki, and A. Dh, Survival and outcomes following bioprosthetic vs mechanical mitral valve replacement in patients aged 50 to 69 years, JAMA, vol.313, pp.1435-1442, 2015.
DOI : 10.1001/jama.2015.3164

URL : https://jamanetwork.com/journals/jama/articlepdf/2247145/joi150036.pdf

. Manji-ra, M. Ekser-b, C. Ah, and . Dk, Bioprosthetic heart valves of the future, Xenotransplantation, vol.21, pp.1-10, 2014.

O. Brown-jm, . Sm, and . Wu-c, Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database, J Thorac Cardiovasc Surg, vol.137, pp.82-90, 2009.

. Dunning-j, H. Gao, and . Chambers-j, Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use--an analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database, J Thorac Cardiovasc Surg, vol.142, 2011.

W. Jg and . Dvir-d, Is Transcatheter Aortic Valve Replacement a Durable Therapeutic Strategy, JACC Cardiovasc Interv, vol.8, pp.1092-1094, 2015.

. Rozen-g, . Fefer-p, and . Shinfeld-a, The changing characteristics and outcomes of patients undergoing surgical aortic valve replacement in the transcatheter aortic valve implantation era, J Cardiovasc Med (Hagerstown), vol.16, pp.261-266, 2015.

. Rahimtoola-sh, Choice of prosthetic heart valve in adults an update, J Am Coll Cardiol, vol.55, pp.2413-2426, 2010.

A. Siddiqui-rf, . Jr, and . Butany-j, Bioprosthetic heart valves: modes of failure, Histopathology, vol.55, pp.135-144, 2009.

D. Te, F. Cm, J. Bos, J. Ivanov, and A. S. , Aortic valve replacement with Toronto SPV bioprosthesis: optimal patient survival but suboptimal valve durability, J Thorac Cardiovasc Surg, vol.135, pp.19-24, 2008.

S. Johnston-dr, . Eg, and . Vakil-n, Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants, Ann Thorac Surg, vol.99, pp.1239-1247, 2015.

. Mathapati-s, C. Verma-rs, . Km, and . Guhathakurta-s, Inflammatory responses of tissue-engineered xenografts in a clinical scenario, Interact Cardiovasc Thorac Surg, vol.12, pp.360-365, 2011.

. Wong-ml and . Griffiths-lg, Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization, Acta Biomater, vol.10, pp.1806-1816, 2014.

. Galili-u, Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits, Immunology, vol.140, pp.1-11, 2013.

. Yuriev-e, . Agostino-m, and . Farrugia-w, Structural biology of carbohydrate xenoantigens, Expert Opin Biol Ther, vol.9, pp.1017-1029, 2009.

. Konakci-kz, . Bohle-b, and . Blumer-r, Alpha-Gal on bioprostheses: xenograft immune response in cardiac surgery, Eur J Clin Invest, vol.35, pp.17-23, 2005.

. Naso-f, . Gandaglia-a, and . Bottio-t, First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses, Xenotransplantation, vol.20, pp.252-261, 2013.

O. H. Park-cs, K. Ss, and . Ye, Anti-alpha-Gal antibody response following xenogeneic heart valve implantation in adults, J Heart Valve Dis, vol.22, pp.222-229, 2013.

. Byrne-gw and . Mcgregor-cg, First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprosthesis (by Naso et al.), Xenotransplantation, vol.21, pp.11-12, 2014.

. Mcgregor-cg, H. Kogelberg, M. Vlasin, and . Byrne-gw, Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves, J Heart Valve Dis, vol.22, pp.383-390, 2013.

. Miyagawa-s, . Yamamoto-a, and . Matsunami-k, Complement regulation in the GalT KO era, Xenotransplantation, vol.17, pp.11-25, 2010.

. Barone-a, J. Benktander, B. Teneberg-s, and . Me, Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts, Xenotransplantation, vol.21, pp.510-522, 2014.

S. Byrne-gw, D. Z. Pg, D. Tr, and M. Cg, Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation, Transplantation, vol.91, pp.287-292, 2011.

, BREIMER ME. Gal/non-Gal antigens in pig tissues and human non-Gal antibodies in the GalT-KO era, vol.18, pp.215-228, 2011.

. Padler-karavani-v and . Varki-a, Potential impact of the non-human sialic acid Nglycolylneuraminic acid on transplant rejection risk, Xenotransplantation, vol.18, pp.1-5, 2011.

. Salama-a, . Evanno-g, J. Harb, and S. Jp, Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation, Xenotransplantation, vol.22, pp.85-94, 2015.

. Lee-w, H. Hara, C. Dk, and M. Ra, Expression of NeuGc on pig heart valves, Xenotransplantation, vol.22, pp.153-154, 2015.

. Saethre-m, . Baumann, . Bc, S. Fung-m, M. Jd et al., Characterization of natural human anti-non-gal antibodies and their effect on activation of porcine gal-deficient endothelial cells, Transplantation, vol.84, pp.244-250, 2007.

. Varki-a, Multiple changes in sialic acid biology during human evolution, Glycoconj J, vol.26, pp.231-245, 2009.

R. E. Amon-r, L. Ben-arye-s, and P. , Glycans in immune recognition and response, Carbohydr Res, vol.389, pp.115-122, 2014.

. Tangvoranuntakul-p, P. Gagneux, and . Diaz-s, Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid, Proc Natl Acad Sci U S A, vol.100, pp.12045-12050, 2003.

P. and Y. H. Cao-h, Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease, Glycobiology, vol.18, pp.818-830, 2008.

G. Pham-t, . Cj, and . Karp-f, Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium, Blood, vol.114, pp.5225-5235, 2009.

P. Hedlund-m, V. Nm, and . Varki-a, Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression, Proc Natl Acad Sci U S A, vol.105, pp.18936-18941, 2008.

A. N. Samraj, P. Om, and . Läubli-h, A red meat-derived glycan promotes inflammation and cancer progression, Proc Natl Acad Sci U S A, vol.112, pp.542-547, 2015.
DOI : 10.1073/pnas.1417508112

URL : http://www.pnas.org/content/112/2/542.full.pdf

P. Scobie-l and L. E. Bas-bernardet-s, Long-term IgG response to porcine Neu5Gc antigens without transmission of PERV in burn patients treated with porcine skin xenografts, J Immunol, vol.191, pp.2907-2915, 2013.

J. Hj, A. M. , P. Hm, K. Yg, and K. Bg, Detection of Hanganutziu-Deicher antigens in O-glycans from pig heart tissues by matrix-assisted laser desorption/ionization time-offlight mass spectrometry, Xenotransplantation, vol.20, pp.407-417, 2013.

P. Diaz-sl and . Ghaderi-d, Sensitive and specific detection of the non-human sialic Acid N-glycolylneuraminic acid in human tissues and biotherapeutic products, PLoS ONE, vol.4, p.4241, 2009.

. Hara-s, . Yamaguchi-m, and . Takemori-y, Determination of mono-O-acetylated Nacetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography, Anal Biochem, vol.179, pp.162-166, 1989.

P. , S. X. , and Y. H. , Cross-comparison of protein recognition of sialic acid diversity on two novel sialoglycan microarrays, J Biol Chem, vol.287, pp.22593-22608, 2012.

Z. Manji-ra, N. Lf, and . Nk, Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection, Circulation, vol.114, pp.318-327, 2006.

D. Pibarot-p and . Jg, Prosthetic heart valves: selection of the optimal prosthesis and longterm management, Circulation, vol.119, pp.1034-1048, 2009.

. Vadori-m and . Cozzi-e, Immunological challenges and therapies in xenotransplantation, Cold Spring Harb Perspect Med, vol.4, 2014.

. Christiansen-d, R. Mouhtouris-e, S. Pa, and . Ms, Studies on carbohydrate xenoantigens, Methods Mol Biol, vol.885, pp.47-56, 2012.

. Galili-u, Induced anti-non gal antibodies in human xenograft recipients, Transplantation, vol.93, pp.11-16, 2012.

. Human-p and . Zilla-p, Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration, J Long Term Eff Med Implants, vol.11, pp.199-220, 2001.

. Mcgregor-cg, L. N. Carpentier-a, L. Js, and . Byrne-gw, Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves, J Thorac Cardiovasc Surg, vol.141, pp.269-275, 2011.

L. P. Lutz-aj and . Estrada-jl, Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation, Xenotransplantation, vol.20, pp.27-35, 2013.

, Neu5Gc and their O-Acetylated derivatives were quantified by DMB-HPLC in native porcine aortic valve cusp (A), pulmonary valve cusp (B), and pericardium (C), and bovine pericardium (D). 2 ?l of tissue homogenates were acid hydrolyzed to release Sia followed by DMB-labeling and HPLC analysis. Sia content was quantified according to a standard curve of purified Neu5Ac. Percentage of each Sia from the total detected is indicated on the charts. All detected O-Acetylation types were summarized, Quantitative analysis of sialic acids in xenogenic cardiac tissues by DMB-HPLC. Neu5Ac

R. , , p.19

, Author manuscript; available in PMC, 2017.

R. , , p.24