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Abstract

Background—The two common sialic acid (Sia) in mammals are N-Acetylneuraminic acid 

(Neu5Ac) and its hydroxylated form N-Glycolylneuraminic acid (Neu5Gc). Unlike most 

mammals, humans cannot synthesize Neu5Gc that is considered foreign and recognized by 

circulating antibodies. Thus, Neu5Gc is a potential xenogenic carbohydrate antigen in 

bioprosthetic heart valves (BHV) that tend to deteriorate in time within human patients.

Methods—We investigated Neu5Gc expression in non-engineered animal-derived cardiac tissues 

and in clinically used commercial BHV, and evaluated Neu5Gc immunogenicity on BHV through 

recognition by human anti-Neu5Gc IgG.

Results—Neu5Gc was detected by immunohistochemistry in porcine aortic valves and in porcine 

and bovine pericardium. Qualitative analysis of Sia-linkages revealed Siaα2–3>Siaα2–6 on 

porcine/bovine pericardium while the opposite in porcine aortic/pulmonary valve cusps. Similarly, 
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six commercial BHV containing either porcine aortic valve or porcine/bovine/equine pericardium 

revealed Siaα2–3>Siaα2–6 expression. Quantitative analysis of Sia by HPLC showed porcine/

bovine pericardium express four-fold higher Neu5Gc levels compared to the porcine aortic/

pulmonary valves, with Neu5Ac at six-fold over Neu5Gc. Likewise, Neu5Gc was expressed on 

commercial BHV (186.3±16.9 pmol Sia/μg protein), with Neu5Ac at eight-fold over Neu5Gc. 

Affinity-purified human anti-Neu5Gc IgG showing high specificity towards Neu5Gc-glycans (with 

no binding to Neu5Ac-glycans) on a glycan microarray, strongly bound to all tested commercial 

BHV, demonstrating Neu5Gc immune recognition in cardiac xenografts.

Conclusions—We conclusively demonstrated Neu5Gc expression in native cardiac tissues, as 

well as in six commercial BHV. These Neu5Gc xeno-antigens were recognized by human anti-

Neu5Gc IgG, supporting their immunogenicity. Altogether, these findings suggest BHV-Neu5Gc/

anti-Neu5Gc may play a role in valve deterioration warranting further investigation.
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Introduction

Heart valve diseases include several pathologies prevalent in ~2–3% of the population in 

developed countries [1,2]. Valvular stenosis is frequently diagnosed and result in valve 

narrowing that restricts normal blood flow with no available medicinal treatment but valve 

replacement [2]. Prosthesis selection includes either bioprosthetic or mechanical heart valves 

(BHV or MHV, respectively), however the latter requires supporting long-term 

anticoagulation. Some studies found better long-term survival for patients receiving the 

latest generation MHV over BHV [3], while others demonstrated equal benefit, but with 

higher incidence of stroke and bleeding in patients receiving MHV [4]. Use of BHV for 

younger patients is controversial [3-5], yet constantly increasing [3,6,7] especially with the 

relative success of the less invasive valve-in-valve trans catheter techniques [8,9] as a later 

procedure if BHV deteriorates. Given the tradeoff between the risk of reoperation because of 

BHV degeneration and the risk associated with long-term anticoagulation, most recent 

guidelines emphasize patients’ choice regarding the type of valve. However, MHV remains 

the recommended prosthesis in patients below the age of 60 if anticoagulation therapy can 

be properly maintained.

BHV made of animal-derived cardiac tissues (i.e. pericardium or porcine heart valve) are 

less durable compared to mechanical valves, largely due to structural valve deterioration 

(SVD) [10,11], especially in patients below 60 years of age [12,13]. In addition, valve 

deterioration is observed earlier in younger BHV recipients (under the age of 50), and high 

mortality is associated with reoperation due to SVD [5]. The immune response towards 

xeno-antigens has been suggested to participate in bioprosthesis SVD [14,15]. Galα1–3Gal 

(α-Gal) is widely accepted as an immunogenic glycan to which the human immune system 

is highly responsive [16,17], and this antigen was recently identified in BHV [18,19]. All 

humans have circulating anti-α-Gal antibodies that respond to this glyco-epitope on 

xenogenic tissues [16,20,21] causing in turn an antibody-mediated inflammation that may 

contribute to BHV degeneration [5,18]. However, studies using α-Gal-knockout tissues 
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reduced immune response against BHV but did not eliminate it [5,22,23], prompting search 

for other non-Gal immunogens in BHV [5,24-26]. One such candidate non-Gal immunogen 

had been suggested to be the non-human sialic acid N-Glycolylneuraminic acid (Neu5Gc) 

carbohydrate xeno-antigen [1,23,26-30], that shares some similarities with α-Gal (neither 

are synthesized in humans due to inactivation of specific genes and the humoral response 

encompass IgA, IgG and IgM) [27].

Sialic acids (Sia) are 9-carbon backbone α-keto sugars covering the tips of sugar chains 

(glycans) on cell surface glycoproteins and glycolipids (glycoconjugates). The two most 

common Sias in mammals are N-Acetylneuraminic acid (Neu5Ac) and its hydroxylated 

form Neu5Gc. However, unlike most other mammals, humans cannot produce Neu5Gc due 

to a deletion in the CMAH gene encoding the CMP-Neu5Ac hydroxylase [31,32]. 

Therefore, Neu5Gc is foreign to humans, yet dietary consumption of mammalian food 

products (e.g. red meat and milk products) result in Neu5Gc intake and its expression on the 

surface of some human cells [32,33]. Various Neu5Gc-containing glycans (on human cells 

from dietary intake or intrinsically in xenografts) are recognized as foreign by the human 

immune system resulting in a diverse anti-Neu5Gc immune response [30,34] that can lead to 

chronic inflammation (e.g. in cancer and vascular disease) [35-37], and last for many years 

even after a short exposure to animal-derived tissues [38]. Neu5Gc had been detected in 

various porcine organs [28], and more recently described in porcine heart valves by 

immunohistochemistry [29] and mass spectrometry of glycoproteins [39], but not of 

glycolipids [24]. Therefore, Neu5Gc may be a non-Gal xeno-antigen in BHV potentially 

recognized by circulating human anti-Neu5Gc antibodies, thereby likely contributing to 

BHV structural deterioration. Here we aimed to qualitatively and quantitatively investigate 

Neu5Gc expression in various animal-derived cardiac tissues and in commercial BHV used 

in the clinic. We further tested the binding of highly specific human anti-Neu5Gc IgG 

antibodies to Neu5Gc-xeno-antigens present on all tested commercial BHV. Altogether these 

findings support a potential role for Neu5Gc and anti-Neu5Gc antibodies in BHV 

deterioration.

Materials and Methods

Human sera samples

Human sera were obtained from the Israeli Blood Bank and used in accordance with the 

Helsinki declaration and Tel Aviv University Institutional Review Board.

Tissue samples

Native porcine and bovine tissues were obtained from a local slaughterhouse. Pericardium 

and valve cusps (aortic and pulmonary) were carefully dissected and kept frozen at −20 °C 

separately until analysis, or fixed for immunohistochemistry as detailed. The commercial 

bioprostheses used in the study were kindly donated by the corresponding producing 

companies (Medtronic, Sorin, St. Jude Medical).
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Antibodies and Lectins

We used affinity-purified polyclonal chicken anti-Neu5Gc IgY [40] (Biolegend), horse 

radish peroxidase (HRP)-streptavidin , Cy3-streptavidin, HRP-goat-anti-human IgG, Cy3-

goat-anti-human IgG (H+L), biotinylated donkey-anti-chicken IgY, HRP-AffiniPure donkey-

anti-chicken IgY (IgG)(H+L), Cy3-donkey-anti-chicken IgY (IgG)(H+L) (Jackson 

ImmunoResearch), biotinylated GSL I – isolectin B4 (IB4), biotinylated SNA (Sambucus 
nigra) and biotinylated MAL-II (Maackia amurensis lectin II) (Vector Labs). All antibodies 

and lectins were used at optimized saturating concentrations.

Immunohistochemistry

Porcine heart valve cusps and porcine and bovine pericardia (the full thickness parietal 

tissue) as well as porcine kidney (positive control) were fixed in buffered paraformaldehyde. 

Immunostaining was performed on 4 μm paraffin sections using cold water fish gelatin 

(Sigma) in PBS buffer containing 0.1% Triton X-100 as blocking reagent. Primary antibody 

was the affinity-purified polyclonal chicken anti-Neu5Gc IgY [40] (Biolegend) in serial 

dilutions where a dilution of 1:2000 was found to be optimal. Secondary antibody was 

biotinylated-donkey anti-chicken IgY (1:500; Jackson ImmunoReserach) detected by HRP-

streptavidin (Jackson ImmunoResearch) followed by DAB reagent (Dako). Positive control 

tissue was porcine kidney and negative controls were obtained by omitting the primary 

antibody.

Tissue homogenization

Porcine, bovine or commercial BHV portions were prepared from frozen or refrigerated 

tissue samples, respectively. Tissues were thawed and weighed. Samples (~16–35 mg) were 

then finely sliced and dissolved in 1 ml TRIS-HCl buffer (50 mM pH5.5) with 10 mM of 

Ca2+. The solution was thoroughly vortexed for 30 seconds and then 2 mg/ml of collagenase 

type 2 (Sigma) was added and the mixture was incubated at 37 °C for 1 hour while shaking 

at 220 rpm. Samples were then put on ice and sonicated with a probe sonicator (Sonic 

dismembrator, Fisher scientific) three times at a medium power, each for 10 seconds with 

30-second intervals incubation on ice. Sonicated solutions together with non-homogenized 

tissue were then inserted to a glass dounce tissue grinder (2 ml; Sigma) and homogenized 

with a loose pestle then with a tight pestle (10 times each). Of note, the fresh tissues were 

fully disrupted while BHV samples were more sturdy. The protein content in the 

homogenate was evaluated by a standard BCA assay according to manufactures’ protocol 

(Pierce). The homogenate was kept at −20 °C until use.

Sialic acid analysis by DMB-HPLC

Sia content of tissue and BHV homogenates was analyzed. Sias were released from 

glycoconjugates by acid hydrolysis; either by hydrolysis that removes O-Acetylation, with 

0.1 M of H2SO4 for 1.5 hours (neutralizing with 0.1 M of NaOH) or by hydrolysis that 

maintains O-Acetylation with 2 M of acetic acid for three hours, both at 80 °C [41]. Free 

Sias were then derivatized with 1,2-diamino-4,5-methylenedioxybenzene (DMB; Sigma) for 

2.5 hours at 50 °C, separated by Microcon-10 centrifugal filters and analyzed by 

fluorescence detection on reverse-phase high pressure liquid chromatography (DMB-HPLC) 
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(Hitachi HPLC Chromaster). HPLC run was on C18 column (Phenomenex C18 Gemini 250 

× 4.6 mm) at 24 °C in running buffer [84.5% ddH2O, 8.5% acetonitrile, 7% methanol 

(Merck)] for 60 minutes (min) at a flow rate of 0.9 ml/min. Quantification of Sias was done 

by comparison with known quantities of DMB-derivatized Neu5Ac [41].

ELISA

Binding of human sera, lectins or antibodies to tissue homogenates was tested by ELISA as 

described [34]. Tissue homogenates (entire crude suspension) were coated at optimized 

equal protein concentrations in duplicates at 2 μg/well in 50 mM sodium carbonate-

bicarbonate buffer, pH 9.5 onto 96-well microtiter plates (Costar, Corning) and plates were 

incubated overnight at 4 °C. Wells were blocked for 1 hour at room temperature with 

blocking buffer [PBS pH 7.4, 1% ovalbumin (Grade V, Sigma)]. Wells were aspirated and 

incubated with diluted primary antibody 100 μl/well in the same blocking buffer for two 

hours at room temperature (1:100 diluted human or mouse serum samples, chicken anti-

Neu5Gc IgY at 1:1000, biotinylated SNA or MAL-II at 1μg/ml). The plates were washed 

three times with PBST (PBS pH 7.4, 0.1% Tween) and subsequently incubated for 1 hour at 

room temperature with HRP-conjugated secondary antibody in PBS (respectively: HRP-goat 

anti-human IgG 0.11 μg/ml, goat-anti-mouse IgG 0.16 μg/ml, HRP-donkey-anti-chicken IgY 

0.26 μg/ml and HRP-streptavidin 0.1 μg/ml). After washing three times with PBST, wells 

were developed with 140 μl of O-phenylenediamine in 100 mM citrate-PO4 buffer, pH 5.5, 

and the reaction stopped with 40 μl of H2SO4 (4 M). Absorbance was measured at 490 nm 

on SpectraMax M3 (Molecular Devices). Specific binding was defined by subtracting the 

background readings obtained with the secondary antibody only on coated wells.

Affinity purification of human anti-Neu5Gc IgG

Pooled human IgG, from clinical therapeutic IVIG leftovers (GAMMAGARD LIQUID, 

Baxter), was kindly provided by Dr. Adriana H. Tremoulet from the Rady Children's 

Hospital, San Diego, USA. Polyclonal human anti-Neu5Gc IgG were affinity-purified from 

IVIG on sequential columns with immobilized human serum and chimpanzee serum as 

previously described [34]. Chimpanzee sera were obtained from the local zoo only during 

routine maintenance procedures and kindly provided by Dr. Gillad Goldstein, curator of the 

Zoological Center Tel Aviv, Safari Park (Israel) and Dr. Nili Avni-Magen, Head Veterinarian 

and Zoological Director of The Tisch Family Zoological Gardens in Jerusalem (Israel).

Biotinylation of affinity-purified human anti-Neu5Gc IgG

Antibodies were biotinylated according to the manufacturer's instruction (EZ-Link™ Sulfo-

NHS Biotin kit, Pierce). Briefly, 0.5 ml of purified anti-Neu5Gc IgG 0.5 mg/ml were 

supplemented with 3 μl 10 mM of sulfo-NHS-biotin and incubated on ice for two hours. 

Non-reacted Sulfo-NHS-biotin was removed using zeba-spin gel filtration columns (Pierce).

Sialoglycan microarray fabrication

Arrays were printed on epoxide-derivatized Corning slides as described (Array1 [42]) with 

some modifications. Arrays were fabricated with NanoPrint LM-60 Microarray Printer 

(Arrayit) on epoxide-derivatized slides (Corning) with 16 sub-array blocks on each slide. 
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Glycoconjugates were distributed into one 384-well source plates using 4 replicate wells per 

sample and 8 μl per well (Version 1.0). Each glycoconjugate was prepared at 100 μM in an 

optimized print buffer (300 mM phosphate buffer, pH 8.4). To monitor printing quality, 

replicate-wells of human IgG (Jackson, at 200, 100, 50, 25, 12.5, 6.25 ng/μl in PBS+10% 

glycerol) and AlexaFlour-555-Hydraside (Invitrogen, at 1 ng/μl in 178 mM phosphate buffer, 

pH 5.5) were used for each printing run. The arrays were printed with four 946MP3 pins (5 

μm tip, 0.25 μl sample channel, ~100 μm spot diameter; Arrayit). Each block (sub-array) has 

17 spots/row, 20 columns with spot to spot spacing of 225 μm. The humidity level in the 

arraying chamber was maintained at about 66% during printing. Printed slides were left on 

arrayer deck over-night, allowing humidity to drop to ambient levels (40-45%). Next, slides 

were packed, vacuum-sealed and stored in a desiccant chamber at room temperature (RT) 

until used.

BHV microarray fabrication

Arrays were printed with NanoPrint LM-60 Microarray Printer (Arrayit) on epoxide-

derivatized slides (Corning) with 16 sub-array blocks on each slide. Homogenates of BHV 

were distributed into one 384-well source plates using 4 replicate wells per sample and 8 μl 

per well. Each BHV's homogenate was centrifuged and the supernatant diluted in PBS pH 

7.4 to 100 ng/μl. To monitor printing quality, human IgG (Jackson, 40 ng/μl in PBS+10% 

glycerol) and AlexaFlour-555-Hydraside (Invitrogen, at 1 ng/μl in 178 mM phosphate buffer, 

pH 5.5) were used for each printing run. The arrays were printed with one 946MP3 pin (5 

μm tip, 0.25 μl sample channel, ~100 μm spot diameter; Arrayit). Each block (sub-array) has 

14 rows, 6 columns with spot to spot spacing of 225 μm. The humidity level in the arraying 

chamber was maintained at about 70% during printing. Printed slides were left on arrayer 

deck over-night, allowing humidity to drop to ambient levels (40–45%). Next, slides were 

packed, vacuum-sealed and stored in a desiccant chamber at RT until used.

Sialoglycan microarray binding assay

Slides were developed and analyzed as previously described [42]. Slides were rehydrated 

with dH2O and incubated for 30 min in a staining dish with 50°C pre-warmed ethanolamine 

(0.05 M) in Tris-HCl (0.1 M, pH 9.0) to block the remaining reactive epoxy groups on the 

slide surface, then washed with 50 °C pre-warmed dH2O. Slides were centrifuged at 200×g 
for three min then fitted with ProPlate™ Multi-Array 16-well slide module (Invitrogen) to 

divide into the sub-arrays (blocks). Slides were washed with PBST, aspirated and blocked 

with 200 μl/sub-array of blocking buffer (PBS/OVA, 1% w/v ovalbumin, Sigma in PBS, pH 

7.3) for 1 hour at RT with gentle shaking. Next, the blocking solution was aspirated and 200 

μl/ block of primary detection diluted in PBS/OVA was added: polyclonal affinity-purified 

human anti-Neu5Gc IgG (from IVIG) at 40 μg/ml, biotinylatedlectins (SNA/MAL-II/IB4; 20 

μg/ml). Primary detections were incubated with gentle shaking for 2 hours at RT. Slides 

were washed three times with PBST (PBS, 0.1% Tween) then with PBS for 10 min/wash 

with shaking. Bound antibodies were detected by incubating with secondary detection 

diluted in PBS, 200 μl/block at RT for 1 hour: Cy3-goat-anti-human IgG (H+L) (0.4 μg/ml) 

or Cy3-streptavidin (1.2 μg/ml). Slides were washed three times with PBST then with PBS 

10 min/wash followed by removal from ProPlate™ Multi-Array slide module and 

immediately dipping slide in a staining dish with dH2O for 10 min with shaking, then 
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centrifuged at 200×g for 3 min. Dry slides were vacuum-sealed and stored in dark until 

scanning.

Array slide processing

Processed slides were scanned and analyzed as described at 10 μm resolution with a 

Genepix 4000B microarray scanner (Molecular Devices) using 350 gain [42]. Image 

analysis was carried out with Genepix Pro 6.0 analysis software (Molecular Devices). Spots 

were defined as circular features with a variable radius as determined by the Genepix 

scanning software. Local background subtraction was performed.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 5.0, and described in context in 

the figure legends.

Results

Expression of Neu5Gc in native untreated porcine and bovine cardiac tissues

To evaluate Neu5Gc expression in porcine aortic valvular cusp and porcine and bovine 

pericardium, the main source of biological tissues for commercial BHV, 

immunohistochemistry analysis was performed using a highly specific polyclonal antibody 

that recognize multiple Neu5Gc-containing glycans [40,42]. Anti-Neu5Gc antibody showed 

a clear staining of the porcine valve cusp endothelium (Figure 1B) and a very faint staining 

in the cusp matrix tissue under the endothelium. Porcine pericardium (Figure 1C) showed 

staining of the entire matrix tissue with an increased staining of the mesothelial cells. The 

endothelium of a small artery (Figure 1C) is positive while the arterial muscular cells are 

negative. Bovine pericardium (Figure 1D) shows similar staining to the porcine pericardium 

with diffused staining of the matrix and strong staining of the epicardial and vascular 

endothelial cells. The negative controls, omitting the primary antibody, were always 

completely negative (Figure 1A). Porcine kidney positive control tissue (not shown) showed 

strong anti-Neu5Gc staining of all vascular endothelial cells (artery, glomerular- and 

peritubular-capillaries). The tubular cell brush border was positive and a weak granular 

staining of the tubular cell cytoplasm was also seen. All artery muscular cells were 

completely negative, as seen for the pericardial small arteries in Figures 1C–D, showing that 

the diffuse staining of the pericardium matrix is not due to non-specific background staining. 

Altogether, Neu5Gc seems to be intrinsically expressed on all tested animal-derived cardiac 

tissues that make up various commercial BHV.

Characterization of Neu5Gc antigen in native untreated porcine and bovine cardiac tissues

Neu5Ac and Neu5Gc are Sia normally covering the tips of glycans on various glycoproteins 

and glycolipids on the cell surface [32]. Sias are attached to underlying carbohydrate core 

chains via α2–3 or α2–6 linkages (namely, Sia carbon C-2 attached to C-3 or C-6 of 

galactose or N-Acetylgalactosamine). To further characterize Sia expression and their core 

saccharide linkage in xenogenic cardiac tissues of relevance for BHV, we analyzed porcine 

aortic and pulmonary valve cusps, and porcine and bovine pericardium (Figure 2). The 

tissues were partially homogenized and Sia distribution investigated by ELISA using anti-
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Neu5Gc IgY and Sia-binding lectins that can differentially recognize glycans carrying 

Siaα2–3 (MAL-II) or Siaα2–6 (SNA) [42]. This revealed that all tissues express Neu5Gc 

(Figure 2), supporting the immunohistochemistry analysis. Furthermore, both Siaα2–3 and 

Siaα2–6 linkages were found in all tissues analyzed (Figure 2) and showed a slightly 

different distribution. While porcine aortic or pulmonary valve cusps expressed higher levels 

of Siaα2–6 (SNA reactivity) compared to Siaα2–3 (MAL-II reactivity) (Figure 2A–B), the 

porcine and bovine pericardia showed a reversed expression pattern with Siaα2–3 

expression more pronounced (Figure 2C–D). Overall, this immunological analysis revealed 

qualitative differences in Sia expression between the various cardiac tissues, with all 

showing Neu5Gc expression.

Sias can be further diversified with O-acetyl groups at positions C-4, C-7, C-8 or C-9 

(Figure 3A) potentially adding to immunogenic Sia determinants. To directly identify and 

quantitate the various Sias (Neu5Ac, Neu5Gc and their O-Acetylation derivatives) in the 

valve cusps and pericardium, we further analyzed the homogenates by a sensitive 

fluorometric HPLC method (DMB-HPLC). In this analysis, Sia was released from 

glycoconjugates by mild acid hydrolysis followed by labeling with the fluorogenic reagent 

1,2-diamino-4,5-methylenedioxybenzene (DMB) that reacted with α-keto acids (Figure 3B). 

DMB-labeled Sias were then separated on reverse-phase HPLC according to their 

hydrophobicity (e.g. Neu5Ac is more hydrophobic compared to its hydroxylated derivative 

Neu5Gc, thus migrating slower on the column; Figure 3C) using Sia-derivatives released 

from bovine submaxillary mucin (BSM) as reference for Sia type characterization (Figure 

3B) [41]. Direct quantification of Sia by DMB-HPLC analysis revealed Neu5Gc expression 

in all xenogenic cardiac tissues assessed (Figure 4), confirming the previous immunological 

analysis (Figures 1 and 2). Furthermore, both porcine pericardium and bovine pericardium 

expressed four-fold higher Neu5Gc levels (416.3±17.8 pmol Sia/mg tissue; n=2, mean ± 

SEM of values in each of the pericardia; Figure 4C-D) compared to the porcine aortic/

pulmonary valve cusps (101.8±17 pmol Sia/mg tissue; n=2, mean ± SEM of values in each 

of the valve cusps; Figure 4A-B). In addition, a considerably increased Neu5Ac expression 

(82.3±2.3 %; n=4, mean ± SEM of values in each of the tissues) compared to Neu5Gc 

(15.6±3.5 %; n=4, mean ± SEM of values in each of the tissues) were found in all tissues 

corresponding to a roughly six-fold difference (6.4±1.7; n=4, mean ± SEM of values in each 

of the tissues); O-Acetylated Neu5Gc was lacking in all tissues, while very low O-

Acetylated Neu5Ac (4.3±3.5 %; n=2, mean ± SEM of values in each of the tissues) was 

found only in the porcine valves but not in porcine and bovine pericardia (Figure 4A–D). 

Altogether, our data demonstrate that Neu5Gc is an integral part of porcine/bovine cardiac 

tissues, especially in pericardium, that serve as the source for commercial BHV implanted in 

patients.

Characterization of Neu5Gc antigen in clinically used commercial BHV

During manufacturing of BHV for clinical use, the animal-derived cardiac tissues are often 

processed to reduce immunogenicity and extend preservation (Table I). This may include 

pretreatment with: glutaraldehyde, formaldehyde and ethanol, anti-calcification and 

phospholipid-reduction treatments [1,43]. To determine Neu5Gc expression in various 

commercial BHV, six commercial commonly used BHV made up of porcine aortic valve 
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(Mosaic) or porcine, bovine or equine pericardium were analyzed (Table I). Initial 

qualitative analysis of BHV homogenates showed all six samples express Neu5Gc, α-Gal 

(IB4) and both Siaα2–3 and Siaα2–6 linkages (Figure 5A). Interestingly, Neu5Gc RFU 

seemed 3 fold higher compared to α-Gal (3.3±0.5; n=6, mean ratio (Neu5Gc/IB4) ± SEM), 

however the values are not normalized according to a common standard curve. Those made 

of pericardium displayed four fold higher levels of Siaα2–3 (MAL-II) compared to Siaα2–6 

(SNA) (3.7±0.6; n=5, mean ratio (Siaα2–3/Siaα2–6) ± SEM). This was consistent with the 

analysis of porcine and bovine pericardium (Figure 4C-D). Similarly, the Mosaic BHV made 

of porcine heart valve had higher levels of Siaα2–3, albeit to a lower extent (1.6 fold Siaα2–

3 over Siaα2–6; Figure 5A). Interestingly, BHV from the same source showed different 

levels of lectin binding, probably reflecting differential BHV pretreatment during 

manufacturing (Figure 5A), or alternatively could be a consequence of different sources of 

cattle used. Hence, Mitroflow PRT that showed reduced Siaα2–3/6 compared to the original 

Mitroflow BHV, is known to be pre-treated with octanediol (amphipatic long chain alcohol 

with a hydrophobic tail and a hydrophilic head) to remove phospholipids that likely also 

affects sialo-glycoproteins or sialo-glycospingolipids content. BHV were more difficult to 

process compared with the fresh tissues, yet we used optimized equal amounts of protein in 

these qualitative measurements. This may result in underestimation of Sia in BHV compared 

with the fresh tissues using these assays. To directly characterize and quantify Neu5Gc and 

Neu5Ac expression in the BHV, DMB-HPLC analysis was performed. In this assay 

complete release of the total Sia is achieved and therefore provide a more accurate 

quantitative comparison between the different samples. This showed that regardless of the 

tissue source or the BHV processing procedure (Table I), Neu5Gc remained expressed 

(193.8±167.8 pmol Sia/μg protein; n=6, mean±SEM; Figure 5B), albeit at two-fold lower 

levels compared to the native xenogenic cardiac tissues (Figure 4C–D). Similar to the 

porcine and bovine native tissues, commercial BHV expressed higher levels of Neu5Ac 

(88.3±1.1 %) compared to Neu5Gc (11.6±1.1 %), corresponding to an eight-fold difference 

(8.0±0.7; Figure 5B). Thus, Neu5Gc is clearly expressed in the tested commercial BHV, 

despite pre-processing (Table I) for reduced immunogenicity. Yet it is possible that different 

batches of the same BHV brand would express variable levels of Sia.

Human anti-Neu5Gc IgG reactivity against commercial BHV

Humans express variable levels of serum anti-Neu5Gc antibodies (IgG, IgA, and IgM) 

recognizing multiple Neu5Gc-containing epitopes [34]. Sera from three individual healthy 

donors with anti-Neu5Gc IgG reactivity (data not shown) showed binding to porcine and 

bovine cardiac tissues (Figure 6). Human serum immunoglobulins could potentially 

recognize immunogenic epitopes also on commercial BHV, and some of it may be related to 

Neu5Gc/anti-Neu5Gc recognition. Therefore, polyclonal anti-Neu5Gc IgG was affinity-

purified from clinical remnants of IVIG that is human IgG pooled from thousands of healthy 

donors, thus reflecting the average population reactivity. The specificity of the purified 

antibodies was determined on a glycan microarray representing the various cell surface 

sialoglycans, presenting multiple Siaα2–3/6 glycans with terminal Neu5Ac or Neu5Gc and 

their O-Acetylated derivatives (Figure 7A). The antibodies show a very strong specificity to 

Neu5Gc-glycans and, as expected, no cross-reactivity with the matching Neu5Ac-glycans, 

despite the fact that the only difference between matched pairs of Neu5Ac/Neu5Gc-glycans 
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is a single oxygen atom on C-5 (Figure 3A). In addition, the polyclonal antibodies recognize 

Neu5Gcα2–3/6-linked, with or without C-9 O-Acetylation (Figure 7A). Subsequently, we 

tested the binding of these highly specific human anti-Neu5Gc IgG antibodies to the 

commercial BHV homogenates, revealing they could all be recognized (Figure 7B). Of note, 

the Mitroflow PRT showed reduced anti-Neu5Gc IgG binding compared to other BHV. Yet 

despite the much higher Neu5Ac expression and the overall reduction in Neu5Gc content on 

the commercial BHV compared to the native xenogenic cardiac tissues, it seemed that the 

manufacturing process did not eliminate the antibodies binding to Neu5Gc on commercial 

BHV.

Discussion

Here we qualitatively and quantitatively demonstrate Neu5Gc expression in various animal-

derived cardiac tissues and in six commercial BHV used in the clinic. We further show that 

highly specific human anti-Neu5Gc IgG antibodies recognize Neu5Gc-xeno-antigens 

present on six commercial BHV tested. Altogether these findings support a role of Neu5Gc 

and anti-Neu5Gc antibodies in BHV immunogenicity, which may be involved in progressive 

tissue failure. Although SVD occurs early in some bioprostheses, it is generally considered 

to begin 7 to 8 years after implantation and its occurrence increases rapidly after 10 years 

[44]. Age is a clear factor of SVD that ensues earlier in young patients. Progressive valve 

stenosis related to fibrosis and leaflets calcification are the main causes of SVD, while 

leaflet tear with acute or subacute valvular regurgitation is less frequent [44]. According to 

current knowledge, SVD mechanism can be due to 3 different biological processes: First, 

glutaraldehyde treatment to reduce antigenicity of xenogeneic bioprosthetic tissue may 

predispose it to a passive degenerative process with calcium crystal formation, and 

accumulation is partially prevented by anti-calcification treatment; Second, the 

atherosclerotic process involved at least in part in native aortic valve degeneration, is also 

likely playing a role in bioprosthesis SVD. In support, recent studies demonstrated a relation 

between classical cardiovascular risk factors such as diabetes, metabolic syndrome, 

dyslipidemia, or smoking and SVD; Third, and as suggested in the present study, 

bioprosthetic valve tissue does remain immunogenic, and this immunogenicity might elicit, 

or at least participate in, an inflammatory process that promotes progressive tissue 

degeneration [44].

Species-specific molecules in xenografts are recognized as immunogenic non-self and elicit 

an immune response to eliminate these targets [45]. Clinically used BHV are made of 

animal-derived cardiac tissues that are processed to reduce immunogenicity, but are 

nevertheless relatively short-lived [1]. In addition to protein xeno-antigens, carbohydrate 

antigens also play a major role and include the α-Gal [16] or non-Gal immunogens 

[5,24,25,46,47]. Neu5Gc had been suggested to be a major non-Gal xeno-antigen in BHV 

[1,27-29,46], thus prompting further in-depth investigation.

Here, for the first time, we conclusively demonstrated and quantitated Neu5Gc expression in 

porcine and bovine cardiac tissues as well as in six commercial BHV from 3 different 

species, namely porcine, bovine and equine (of note, we tested one sample of each BHV). 

Analysis of native pericardium and BHV made of pericardium showed specific Sia-linkage 
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preferences towards Siaα2–3>Siaα2–6, which may become important for future therapeutic 

approaches (e.g. for designing potent inhibitors for specific immune reactants). In all cardiac 

tissues Neu5Gc was markedly lower than Neu5Ac and yet preserved its immunogenicity 

allowing recognition by polyclonal human anti-Neu5Gc IgG representing the average 

population response. Thus, Neu5Gc-glycoconjugates are likely candidates to become a 

major factor contributing to BHV deterioration in patients. Quantification of xeno-antigens 

in BHV is important for quality control, risk evaluation and patients’ confidence in BHV 

choice. While BHV had been used in the clinic for many years, the major α-Gal xeno-

antigen had only recently been quantitated [19]. Quantification of Neu5Gc in commercial 

BHV performed in this work is of clear importance and provides initial lead to manage its 

immunogenicity, as would be for other potential antigenic structures. Neu5Gc and α-Gal are 

both carbohydrate xeno-antigens. However, while α-Gal is represented by the single glycan 

Galα1–3Gal, Neu5Gc-containing antigens encompass a large collection of xeno-antigens 

epitopes with terminal Neu5Gc [27,32,34], some represented on the sialoglycan microarray 

(Figure 7A). Adding to the complexity, both xeno-antigens can be conjugated to proteins or 

lipids that may further affect their immunogenicity [27]. Interestingly, Neu5Gc-containing 

glycosphingolipids were not detected in porcine heart valve cusps [24] suggesting Neu5Gc-

antigens are mainly on glycoproteins. It would be interesting to further investigate Neu5Gc 

content specifically in collagen that is a major glycoprotein constituent in BHV tissue. In 

addition, investigating batch-to-batch variability in xenoantigens expression on commercial 

BHV is warranted.

All humans have pre-existing circulating IgA/IgG/IgM antibodies against glycoconjugates 

with terminal α-Gal or Neu5Gc. Yet, anti-Neu5Gc antibodies are quite diverse in their levels 

and binding patterns between individuals, some circulate at very high levels [34]. The co-

localization of each xeno-antigen and its corresponding anti-Neu5Gc antibodies within a 

given patient likely mediates the potential deleterious effects of immune response against the 

xenografts by chronic inflammation or by various routes (e.g. immune complex formation, 

atherosclerosis-like, etc) [28,45]. α-Gal/anti-Gal antibodies had been shown to mediate 

inflammation leading to increased BHV calcification [21,48,49], and implanted BHV further 

induced anti-Gal response [18,21]. It had already been shown that co-existing Neu5Gc/anti-

Neu5Gc antibodies mediate chronic inflammation in cancer [36,37] and atherosclerosis [35]. 

Likewise, it is possible that chronic inflammation mediated by Neu5Gc/anti-Neu5Gc 

antibodies would potentially be involved in BHV deterioration in patients. Thus both anti-

Gal antibodies and anti-Neu5Gc antibodies may contribute to valve deterioration. Of note, 

either pre-existing anti-Neu5Gc antibodies or those possibly induced after exposure to 

xenograft may contribute to the process of valve deterioration. Therefore, evaluation of anti-

Neu5Gc antibodies in patients before and after BHV surgery could possibly allow to better 

evaluate associated risks. The difficulties in obtaining allografts naturally prompted search 

of improved xenograft, in which most antigens had been removed either chemically or by 

generating unique knockout strains that lack xeno-antigen expression, including the α-Gal-

deficient [22,49] and the double-knockout α-Gal/Neu5Gc-deficient porcine strains [50], that 

are currently being investigated [1]. It would be interesting to test the presence of these 

antigens in those strains especially in valve and pericardium. Future studies are required to 
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evaluate the role of Neu5Gc immunogenicity in human patients and its potential role in 

bioprosthesis SVD.
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Abbreviations

Sia Sialic acid

Neu5Ac N-Acetylneuraminic acid

Neu5Gc N-Glycolylneuraminic acid

BHV bioprosthetic heart valves

MHV mechanical heart valves

SVD structural valve deterioration

α-Gal Galactoseα1–3Galalactose; Galα1–3Gal

HRP horse radish peroxidase

DMB 1,2-diamino-4,5-methylenedioxybenzene
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Figure 1. 
Immunohistochemical investigation of porcine and bovine tissues using anti-Neu5Gc 

antibody. (A) Porcine aortic valve cusp negative control. Porcine aortic valve cusp (B) and 

pericardium (C) and bovine pericardium (D) were stained for Neu5Gc. Arrows show the 

endothelium (A, B) and epicardium (C, D) and arrowheads show a small artery (C) and a 

capillary (D) with a strong staining of their endothelium while the muscular cells are 

completely negative. Fragments of tissues were used for analysis; data is representative of at 

least two independent experiments.
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Figure 2. 
Characterization of sialic acids in xenogenic cardiac tissues by ELISA. Tissue homogenates 

of native porcine aortic valve cusp (A), pulmonary valve cusp (B), pericardium (C), and 

bovine pericardium (D) were coated onto a 96-well plate and analyzed with anti-Neu5Gc 

IgY (Neu5Gc), biotinylated-SNA lectin or biotinylated-MAL-II lectin (detect α2–6-linked 

or α2–3-linked sialic-acids, respectively), washed then detected with HRP-anti-chicken IgY 

or HRP-streptavidin, respectively. All tissue samples express Neu5Gc, with higher levels in 

pericardium compared to valve cusps (at least two different samples from each tissue were 

tested, data represent three independent experiments; mean ± SEM).
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Figure 3. 
Sialic acids analysis by DMB-HPLC of Bovine Submaxilary Mucins (BSM). (A) Schematic 

representation of Sia structure, the backbone carbons are numbered C-1 through C-9. The 

carboxylate group R1 is negatively charged at neutral pH; Sia is linked to underlying glycans 

through R2; R5 marks the difference between Neu5Gc (R5=OH) and Neu5Ac (R5=H). 

Positions R4, R7, R8, R9 can either carry hydroxyl or be modified with O-acetyl group. (B) 

Sia derivatized with 1,2-diamino-4,5-methylenedioxybenzene (DMB) becomes fluorescent. 

(C) Sialic acids profile of Bovine Submaxilary Mucins. BSM was hydrolyzed by mild acid 

hydrolysis (2 M acetic acid that preserves O-Acetylation) then DMB-derivatized and 

analyzed by reverse-phase HPLC. The analysis shows unique fluorescence peaks for each 

type of Sia at different retention times, based on hydrophobicity.
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Figure 4. 
Quantitative analysis of sialic acids in xenogenic cardiac tissues by DMB-HPLC. Neu5Ac, 

Neu5Gc and their O-Acetylated derivatives were quantified by DMB-HPLC in native 

porcine aortic valve cusp (A), pulmonary valve cusp (B), and pericardium (C), and bovine 

pericardium (D). 2 μl of tissue homogenates were acid hydrolyzed to release Sia followed by 

DMB-labeling and HPLC analysis. Sia content was quantified according to a standard curve 

of purified Neu5Ac. Percentage of each Sia from the total detected is indicated on the charts. 

All detected O-Acetylation types were summarized (at least two different samples from each 

tissue were tested, data represent at least two independent experiments; mean ± SEM).
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Figure 5. 
Analysis of Sia expression in commercial BHV by microarray and by DMB-HPLC. (A) 

Indicated BHV homogenates (100 ng/μl) were printed at ten replicates on epoxide-coated 

slides and detected for Neu5Gc, α-Gal, α2–3-linked or α2–6-linked sialic acids by Cy3-

anti-Neu5Gc IgY (Neu5Gc) or biotinylated-IB4/MAL-II/SNA lectins, respectively, and 

binding detected by Cy3-strepavidin. Intensity unit are Relative Fluorescence Units (RFU; 

representing fluorescence at 532 nm after local background subtraction (representative of 

two independent experiments; mean ± SD). All BHV showed more Neu5Gc than α-Gal and 
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more Siaα2–3 than Siaα2–6. (B) BHV homogenates were acid hydrolyzed with sulfuric 

acid and analyzed by DMB-HPLC for quantifying Neu5Ac and Neu5Gc (single BHV 

samples of each brand; two independent experiments; mean ± SEM). Neu5Gc is clearly 

detected in all tested BHV.
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Figure 6. 
Human sera reactivity with porcine and bovine cardiac tissues. Tissue samples from native 

porcine aortic valve, pulmonary valve, and pericardium, and bovine pericardium were coated 

on 96-well microplates (1 μg/well) and serum of three individual healthy human donors 

(HS1, HS2, HS3) were tested at 1:100 dilution (two independent experiments; mean ± 

SEM).
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Figure 7. 
Binding of affinity-purified polyclonal human anti-Neu5Gc IgG on sialic acid glycan-

microarray and BHV microarray. Human anti-Neu5Gc IgG were affinity-purified from 

clinically used IVIG (pooled human IgG). 40 ng/μl were tested on glycan microarray (A) 

and BHV microarray (B) followed by detection with Cy3-anti-human IgG (Intensity unit are 

Relative Fluorescence Units (RFU; representing fluorescence at 532 nm after local 

background subtraction; representative of two independent experiments; mean ± SD)
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Table I

List of bioprosthetic heart valves (BHV) used in this study.

Manufacturer Name of BHV Animal source Bioprosthesis treatment

1 Medtronic Mosaic Porcine aortic valves Glutaraldehyde and alpha amino oleic acid

2 St Jude Medical TRIFECTA *
Bovine and porcine pericardium

Linx™ AC Technology (proprietary anti-calcification 
treatment)

3 Sorin Solo Smart Bovine pericardium Homocysteic acid

4 Sorin Mitrofow PRT Bovine pericardium Octanediol

5 Sorin Mitrofow Bovine pericardium Glutaraldehyde

6 Medtronic ATS 3f Equine pericardium Glutaraldehyde

*
The TRIFECTA valve (St. Jude Medical) is a three-leaflet stented bovine pericardial valve designed for supra-annular placement in the aortic 

position. In TRIFECTA, the valve leaflets are made of bovine pericardium. The stent, excluding the sewing cuff, is covered with porcine 
pericardium
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