H. Wu and S. J. Chadban, Roles of Toll-like receptors in transplantation, Curr. Opin. Organ Transplant, vol.19, pp.1-7, 2014.

D. N. Mori, D. Kreisel, J. N. Fullerton, D. W. Gilroy, and D. R. Goldstein, Inflammatory triggers of acute rejection of organ allografts, Immunol. Rev, vol.258, pp.132-144, 2014.

A. Chong and M. Alegre, The impact of infection and tissue damage in solid-organ transplantation, Nat. Rev. Immunol, vol.12, pp.459-471, 2012.

M. M. Mcfarland-mancini, Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor, J. Immunol, vol.184, pp.7219-7228, 2010.

G. D. Cameron, Haptoglobin phenotype correlates with development of cardiac transplant vasculopathy, J. Heart Lung Transplant, vol.23, pp.43-49, 2004.

A. Shirali and D. Goldstein, Tracking the toll of kidney disease, J. Am. Soc. Nephrol, vol.19, pp.1444-1450, 2008.

A. Shirali and D. R. Goldstein, Activation of the innate immune system by the endogenous ligand hyaluronan, Curr. Opin. Organ Transplant, vol.13, pp.20-25, 2008.

G. Y. Chen and G. Nuñez, Sterile inflammation: sensing and reacting to damage, Nat. Rev. Immunol, vol.10, pp.826-837, 2010.

D. Gjertson, Impact of delayed graft function and acute rejection on kidney graft survival, Clin. Transpl, pp.467-480, 2000.

A. Debout, Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation, Kidney Int, vol.87, pp.343-349, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02147789

J. Stehlik, The Registry of the International Society for Heart and Lung Transplantation: twentyeighth adult heart transplant report, 2011.

, J. Heart Lung Transplant, vol.30, pp.1078-1094, 2011.

L. H. Lund, The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report -focus theme: early graft failure, J. Heart Lung Transplant, vol.34, pp.1244-1254, 2015.

G. Chalasani, The allograft defines the type of rejection (acute versus chronic) in the face of an established effector immune response, J. Immunol, vol.172, pp.7813-7820, 2004.

C. Ponticelli, Ischaemia-reperfusion injury: a major protagonist in kidney transplantation, Nephrol. Dial. Transplant, vol.29, pp.1134-1140, 2014.

A. J. Matas, 2202 kidney transplant recipients with 10 years of graft function: what happens next?, Am. J. Trans, vol.8, pp.2410-2419, 2008.

B. Floerchinger, Inflammatory immune responses in a reproducible mouse brain death model, Transpl. Immunol, vol.27, pp.25-29, 2012.

S. C. Hoffmann, Molecular and immunohistochemical characterization of the onset and resolution of human renal allograft ischemiareperfusion injury, Transplantation, vol.74, pp.916-923, 2002.

J. H. Sheen and P. S. Heeger, Effects of complement activation on allograft injury, Curr. Opin. Organ Transplant, vol.20, pp.468-475, 2015.

F. Ali, A. Dua, and D. C. Cronin, Changing paradigms in organ preservation and resuscitation, Curr. Opin. Organ Transplant, vol.20, pp.152-158, 2015.

W. Li, Intravital 2-photon imaging of leukocyte trafficking in beating heart, J. Clin. Invest, vol.122, pp.2499-2508, 2012.

K. Pittman and P. Kubes, Damage-associated molecular patterns control neutrophil recruitment, J. Innate Immun, vol.5, pp.315-323, 2013.

Q. Zhuang and F. G. Lakkis, Dendritic cells and innate immunity in kidney transplantation, Kidney Int, vol.5, pp.315-318, 2015.

F. G. Lakkis, Where is the alloimmune response initiated?, Am. J. Transplant, vol.3, pp.241-242, 2003.

A. Tsung, The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion, J. Exp. Med, vol.201, pp.1135-1143, 2005.

H. Wu, HMGB1 contributes to kidney ischemia reperfusion injury, J. Am. Soc. Nephrol, vol.21, pp.1878-1890, 2010.

M. M. Rabadi, T. Ghaly, M. S. Goligorksy, and B. B. Ratliff, HMGB1 in renal ischemic injury, Am. J. Physiol. Renal Physiol, vol.303, pp.873-885, 2012.

N. Kamo, ASC/caspase-1/IL-1? signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury, Hepatology, vol.58, pp.351-362, 2013.

A. Tsung, HMGB1 release induced by liver ischemia involves Toll-like receptor 4-dependent reactive oxygen species production and calciummediated signaling, J. Exp. Med, vol.204, pp.2913-2923, 2007.

H. E. Harris and U. A. , Mini-review: the nuclear protein HMGB1 as a proinflammatory mediator, Eur. J. Immunol, vol.34, pp.1503-1512, 2004.

A. Zhang, Necrostatin-1 inhibits Hmgb1-IL-23/ IL-17 pathway and attenuates cardiac ischemia reperfusion injury, Transpl. Int, vol.27, pp.1077-1085, 2014.

S. O. Syrjälä, Increased Th17 rather than Th1 alloimmune response is associated with cardiac allograft vasculopathy after hypothermic preservation in the rat, J. Heart Lung Transplant, vol.29, pp.1047-1057, 2010.

Y. Huang, Extracellular hmgb1 functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection, Am. J. Transplant, vol.7, pp.799-808, 2007.

B. Moser, Blockade of RAGE suppresses alloimmune reactions in vitro and delays allograft rejection in murine heart transplantation, Am. J. Transplant, vol.7, pp.293-302, 2007.

M. C. Dessing, RAGE does not contribute to renal injury and damage upon ischemia/reperfusioninduced injury, J. Innate Immun, vol.4, pp.80-85, 2012.

J. H. Li, Blockade of extracellular HMGB1 suppresses xenoreactive B cell responses and delays acute vascular xenogeneic rejection, Am. J. Transplant, vol.15, pp.2062-2074, 2015.

H. Zou, HMGB1 is involved in chronic rejection of cardiac allograft via promoting inflammatory-like mDCs, Am. J. Transplant, vol.14, pp.1765-1777, 2014.

D. J. Hausenloy and D. M. Yellon, Ischaemic conditioning and reperfusion injury, Nat. Rev. Cardiol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850309

H. Wu, Preconditioning with recombinant high-mobility group box 1 protein protects the kidney against ischemia-reperfusion injury in mice, Kidney Int, vol.85, pp.824-832, 2014.

M. Netea, G. Quintin, J. Van-der-meer, and W. M. Jos, Trained immunity: a memory for innate host defense, Cell Host Microbe, vol.9, pp.355-361, 2011.

D. Jiang, Regulation of lung injury and repair by Toll-like receptors and hyaluronan, Nat. Med, vol.11, pp.1173-1179, 2005.

P. Teder, Resolution of lung inflammation by CD44, Science, vol.296, pp.155-158, 2002.

P. W. Noble, C. M. Mckee, M. Cowman, and H. S. Shin, Hyaluronan fragments activate an NF-?B/I-?B? autoregulatory loop in murine macrophages, J. Exp. Med, vol.183, pp.2373-2378, 1996.

K. M. Rouschop, Protection against renal ischemia reperfusion injury by CD44 disruption, J. Am. Soc. Nephrol, vol.16, pp.2034-2043, 2005.
DOI : 10.1681/asn.2005010054

URL : https://jasn.asnjournals.org/content/16/7/2034.full.pdf

H. Wu, TLR4 activation mediates kidney ischemia/reperfusion injury, J. Clin. Invest, vol.117, pp.2847-2859, 2007.
DOI : 10.1172/jci31008

URL : http://www.jci.org/articles/view/31008/files/pdf

K. A. Scheibner, Hyaluronan fragments act as an endogenous danger signal by engaging TLR2, J. Immunol, vol.177, pp.1272-1281, 2006.

P. L. Bollyky, Cutting edge: high molecular weight hyaluronan promotes the suppressive effects of CD4 + CD25 + regulatory T cells, J. Immmunol, vol.179, pp.744-747, 2007.

J. Muto, Hyaluronan digestion controls DC migration from the skin, J. Clin. Invest, vol.124, pp.1309-1319, 2014.

A. Wells, Increased hyaluronan in acutely rejecting human kidney grafts, Transplantation, vol.55, pp.1346-1349, 1993.

B. M. Tesar, The role of hyaluronan degradation products as innate alloimmune agonists, Am. J. Transplant, vol.6, pp.2622-2635, 2006.

J. L. Todd, Hyaluronan contributes to bronchiolitis obliterans syndrome and stimulates lung allograft rejection through activation of innate immunity, Am. J. Respir. Crit. Care Med, vol.189, pp.556-566, 2014.

H. Kono, C. Chen, F. Ontiveros, and K. L. Rock, Uric acid promotes an acute inflammatory response to sterile cell death in mice, J. Clin. Invest, vol.120, pp.1939-1949, 2010.

H. Shen, D. Kreisel, and D. R. Goldstein, Processes of sterile inflammation, J. Immunol, vol.191, pp.2857-2863, 2013.

K. Oh, Targeted gene disruption of the heat shock protein 72 gene (hsp70.1) in the donor tissue is associated with a prolonged rejection-free survival in the murine skin allograft model, Transplant Immunol, vol.13, pp.273-281, 2004.

B. Tesar and D. R. Goldstein, Acute allograft rejections occurs independently of inducible HSP-70, Transplantation, vol.11, pp.1513-1517, 2007.

I. K. Quaye, Haptoglobin, inflammation and disease, Trans. R. Soc. Trop. Med. Hyg, vol.102, pp.735-742, 2008.
DOI : 10.1016/j.trstmh.2008.04.010

H. Shen, Haptoglobin activates innate immunity to enhance acute transplant rejection in mice, J. Clin. Invest, vol.122, pp.383-387, 2012.

D. R. Goldstein, B. M. Tesar, S. Akira, and F. G. Lakkis, Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection, J. Clin. Invest, vol.111, pp.1571-1578, 2003.

H. Shen, Haptoglobin enhances cardiac transplant rejection, Circ. Res, vol.116, pp.1670-1679, 2015.
DOI : 10.1161/circresaha.116.305406

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.116.305406

S. W. Brubaker, K. S. Bonham, I. Zanoni, and J. C. Kagan, Innate immune pattern recognition: a cell biological perspective, Annu. Rev. Immunol, vol.33, pp.257-290, 2015.

H. Guo, J. B. Callaway, and J. P. Ting, Inflammasomes: mechanism of action, role in disease, and therapeutics, Nat. Med, vol.21, pp.677-687, 2015.

M. Yoneyama, K. Onomoto, M. Jogi, T. Akaboshi, and T. Fujita, Viral RNA detection by RIG-I-like receptors, Curr. Opin. Immunol, vol.32, pp.48-53, 2015.

M. E. Fitzgerald, D. C. Rawling, A. Vela, and A. M. Pyle, An evolving arsenal: viral RNA detection by RIG-I-like receptors, Curr. Opin. Microbiol, vol.20, pp.76-81, 2014.

T. Seto, Upregulation of the apoptosis-related inflammasome in cardiac allograft rejection, J. Heart Lung Transplant, vol.29, pp.352-359, 2010.

K. B. Shah, A. G. Mauro, M. Flattery, S. Toldo, and A. Abbate, Formation of the inflammasome during cardiac allograft rejection, Int. J. Cardiol, vol.201, pp.328-330, 2015.

S. Pandey, T. Kawai, and S. Akira, Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors, Cold Spring Harb. Perspect. Biol, vol.7, p.16246, 2015.

O. Takeuchi and S. Akira, Pattern recognition receptors and inflammation, Cell, vol.140, pp.805-820, 2010.

N. K. Crellin, Regulation of cytokine secretion in human CD127 + LTi-like innate lymphoid cells by Tolllike receptor 2, Immunity, vol.33, pp.752-764, 2010.

J. C. Leemans, Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney, J. Clin. Invest, vol.115, pp.2894-2903, 2005.

P. S. Patole, Toll-like receptor-4: renal cells and bone marrow cells signal for neutrophil recruitment during pyelonephritis, Kidney Int, vol.68, pp.2582-2587, 2005.

J. S. Leventhal and B. Schroppel, Toll-like receptors in transplantation: sensing and reacting to injury, Kidney Int, vol.81, pp.826-832, 2012.

B. M. Tesar, J. Zhang, Q. Li, and D. R. Goldstein, TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a toll like receptor signal adaptor protein, Am. J. Transplant, vol.4, pp.1429-1439, 2004.

W. E. Walker, Absence of innate MyD88 signaling promotes inducible allograft acceptance, J. Immunol, vol.177, pp.5307-5316, 2006.

H. Wu, Absence of MyD88 signaling induces donor-specific kidney allograft tolerance, J. Am. Soc. Nephrol, vol.23, pp.1701-1716, 2012.

B. Kruger, Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation, Proc. Natl Acad. Sci. USA, vol.106, pp.3390-3395, 2009.

W. P. Pulskens, Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury, PLoS ONE, vol.3, p.3596, 2008.

M. H. Oberbarnscheidt, Non-self recognition by monocytes initiates allograft rejection, J. Clin. Invest, vol.124, pp.3579-3589, 2014.

L. Chen, TLR engagement prevents transplantation tolerance, Am. J. Trans, vol.6, pp.2282-2291, 2006.

X. Zhang, Induction of alloimmune tolerance in heart transplantation through gene silencing of TLR adaptors, Am. J. Trans, vol.12, pp.2675-2688, 2012.

D. J. Kaczorowski, Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart, Transplantation, vol.87, pp.1455-1463, 2009.

S. Wang, Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88-and TRIFdependent signaling, Dis. Model. Mech, vol.3, pp.92-103, 2010.

A. Thierry, The alarmin concept applied to human renal transplantation: evidence for a differential implication of HMGB1 and IL-33, PLoS ONE, vol.9, p.88742, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01928093

M. Ilmakunnas, High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantation, Liver Transplant, vol.14, pp.1517-1525, 2008.

E. Cantu, Gene set enrichment analysis identifies key innate immune pathways in primary graft dysfunction after lung transplantation, Am. J. Trans, vol.13, pp.1898-1904, 2013.

C. F. Andrade, Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation, J. Heart Lung Transplant, vol.25, pp.1317-1323, 2006.

S. M. Palmer, Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation, Clin. Transplant, vol.20, pp.30-36, 2006.

N. Dhillon, A single nucleotide polymorphism of Toll-like receptor 4 identifies the risk of developing graft failure after liver transplantation, J. Hepatol, vol.53, pp.67-72, 2010.

M. C. Dessing, Intragraft Toll-like receptor profiling in acute renal allograft rejection, Nephrol. Dial. Transplant, vol.25, pp.4087-4092, 2010.
DOI : 10.1093/ndt/gfq589

URL : https://academic.oup.com/ndt/article-pdf/25/12/4087/17107886/gfq589.pdf

M. C. Dessing, Toll-like receptor family polymorphisms are associated with primary renal diseases but not with renal outcomes following kidney transplantation, PLoS ONE, vol.10, p.139769, 2015.

J. Kuhlicke, J. S. Frick, J. C. Morote-garcia, P. Rosenberger, and H. K. Eltzschig, Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia, PLoS ONE, vol.2, p.1364, 2007.

K. A. Powers, Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages, J. Exp. Med, vol.203, pp.1951-1961, 2006.

K. A. Zarember and P. J. Godowski, Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines, J. Immunol, vol.168, pp.554-561, 2002.

C. S. Calfee, Plasma receptor for advanced glycation end-products predicts duration of ICU stay and mechanical ventilation in patients after lung transplantation, J. Heart Lung Transplant, vol.26, pp.675-680, 2007.

W. S. Oetting, Donor polymorphisms of toll-like receptor 4 associated with graft failure in liver transplant recipients, Liver Transpl, vol.18, pp.1399-1405, 2012.

E. A. Kastelijn, Polymorphisms in innate immunity genes associated with development of bronchiolitis obliterans after lung transplantation, J. Heart Lung Transplant, vol.29, pp.665-671, 2010.

D. Ducloux, Relevance of Toll-like receptor-4 polymorphisms in renal transplantation, Kidney Int, vol.67, pp.2454-2461, 2005.

C. Palmer, M. Diehn, A. A. Alizadeh, and P. O. Brown, Cell-type specific gene expression profiles of leukocytes in human peripheral blood, BMC Genomics, vol.7, pp.115-115, 2006.

W. D. Park, M. D. Griffin, L. D. Cornell, F. G. Cosio, and M. D. Stegall, Fibrosis with inflammation at one year predicts transplant functional decline, J. Am. Soc. Nephrol, vol.21, 1987.
DOI : 10.1681/asn.2010010049

URL : https://jasn.asnjournals.org/content/21/11/1987.full.pdf

W. Park, M. Griffin, J. P. Grande, F. Cosio, and M. D. Stegall, Molecular evidence of injury and inflammation in normal and fibrotic renal allografts one year posttransplant, Transplantation, vol.83, pp.1466-1476, 2007.

C. Braudeau, Contrasted blood and intragraft toll-like receptor 4 mRNA profiles in operational tolerance versus chronic rejection in kidney transplant recipients, Transplantation, vol.86, pp.130-136, 2008.

H. Methe, E. Zimmer, C. Grimm, M. Nabauer, and J. Koglin, Evidence for a role of toll-like receptor 4 in development of chronic allograft rejection after cardiac transplantation, Transplantation, vol.78, pp.1324-1331, 2004.

M. Naesens, Progressive histological damage in renal allografts is associated with expression of innate and adaptive immunity genes, Kidney Int, vol.80, pp.1364-1376, 2011.

P. Khatri, A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation, J. Exp. Med, vol.210, pp.2205-2221, 2013.

T. Saito, Distinct expression patterns of alveolar "alarmins" in subtypes of chronic lung allograft dysfunction, Am. J. Trans, vol.14, pp.1425-1432, 2014.

J. K. Chan, Alarmins: awaiting a clinical response, J. Clin. Invest, vol.122, pp.2711-2719, 2012.

M. Eikmans, Expression of surfactant protein-C, S100A8, S100A9, and B cell markers in renal allografts: investigation of the prognostic value, J. Soc. Am. Neprol, vol.16, pp.3771-3786, 2005.

M. C. Dessing, The calcium-binding protein complex S100A8/A9 has a crucial role in controlling macrophage-mediated renal repair following ischemia/ reperfusion, Kidney Int, vol.87, pp.85-94, 2015.

K. Shimizu, Loss of myeloid related protein-8/14 exacerbates cardiac allograft rejection, Circulation, vol.124, pp.2920-2932, 2011.

M. P. Soares, R. Gozzelino, and S. Weis, Tissue damage control in disease tolerance, Trends Immunol, vol.35, pp.483-494, 2014.

H. Anders, Immune system modulation of kidney regeneration[mdash]mechanisms and implications, Nat. Rev. Nephrol, vol.10, pp.347-358, 2014.

C. N. Serhan, N. Chiang, and T. Van-dyke, Resolving inflammation: dual anti-inflammatory and proresolution lipid mediators, Nat. Rev. Immunol, vol.8, pp.349-361, 2008.
DOI : 10.1038/nri2294

URL : http://europepmc.org/articles/pmc2744593?pdf=render

M. Kim, The heat-shock protein-70-induced renoprotective effect is partially mediated by CD4 + CD25 + Foxp3 + regulatory T cells in ischemia/ reperfusion-induced acute kidney injury, Kidney Int, vol.85, pp.62-71, 2014.

A. Weidemann and R. S. Johnson, Biology of HIF-1?, Cell Death Differ, vol.15, pp.621-627, 2008.

M. Kido, Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse, J. Am. College Cardiol, vol.46, pp.2116-2124, 2005.

Z. Cai, Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1?, Cardiovasc. Res, vol.77, pp.463-470, 2008.

H. K. Eltzschig and T. Eckle, Ischemia and reperfusion -from mechanism to translation, Nat. Med, vol.17, pp.1391-1401, 2011.
DOI : 10.1038/nm.2507

URL : http://europepmc.org/articles/pmc3886192?pdf=render

R. Medzhitov, D. S. Schneider, and M. P. Soares, Disease tolerance as a defense strategy, Science, vol.335, pp.936-941, 2012.

Y. Chen, Remote ischemic preconditioning fails to improve early renal function of patients undergoing living-donor renal transplantation: a randomized controlled trial, Transplantation, vol.95, pp.4-6, 2013.

P. Hill, Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemiareperfusion injury, J. Am. Soc. Nephrol, vol.19, pp.39-46, 2008.

D. A. Ferenbach, The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice, Kidney Int, vol.79, pp.966-976, 2011.

R. Medzhitov and C. Janeway, Innate immunity. N. Engl. J. Med, vol.343, pp.338-344, 2000.