J. Valladeau, O. Ravel, C. Dezutter-dambuyant, K. Moore, M. Kleijmeer et al., Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules, Immunity, vol.12, pp.71-81, 2000.

A. Chu, M. Eisinger, J. S. Lee, S. Takezaki, P. C. Kung et al., Immunoelectron microscopic identification of Langerhans cells using a new antigenic marker, J. Invest. Dermatol, vol.78, pp.177-180, 1982.

E. Klechevsky, R. Morita, M. Liu, Y. Cao, S. Coquery et al., Functional specializations of human epidermal Langerhans cells and CD14 + dermal dendritic cells, Immunity, vol.29, pp.497-510, 2008.

J. Seneschal, R. A. Clark, A. Gehad, C. M. Baecher-allan, and T. S. Kupper, Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells, Immunity, vol.36, pp.873-884, 2012.

E. Shklovskaya, B. J. O'sullivan, L. G. Ng, B. Roediger, R. Thomas et al., Langerhans cells are precommitted to immune tolerance induction, Proc. Natl. Acad. Sci. USA, vol.108, pp.18049-18054, 2011.

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sacderived macrophages, J. Exp. Med, vol.209, pp.1167-1181, 2012.

M. Merad, M. G. Manz, H. Karsunky, A. Wagers, W. Peters et al., Langerhans cells renew in the skin throughout life under steady-state conditions, Nat. Immunol, vol.3, pp.1135-1141, 2002.

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, M. Loubeau et al., Langerhans cells arise from monocytes in vivo, Nat. Immunol, vol.7, pp.265-273, 2006.

K. Seré, J. H. Baek, J. Ober-blöbaum, G. Uller-newen, F. Tacke et al., Two distinct types of Langerhans cells populate the skin during steady state and inflammation, Immunity, vol.37, pp.905-916, 2012.

M. P. Collin, D. N. Hart, G. H. Jackson, G. Cook, J. Cavet et al., The fate of human Langerhans cells in hematopoietic stem cell transplantation, J. Exp. Med, vol.203, pp.27-33, 2006.

M. Mielcarek, A. Y. Kirkorian, R. C. Hackman, J. Price, B. E. Storer et al., Langerhans cell homeostasis and turnover after nonmyeloablative and myeloablative allogeneic hematopoietic cell transplantation, Transplantation, vol.98, pp.563-568, 2014.

J. Kanitakis, E. Morelon, P. Petruzzo, L. Badet, and J. M. Dubernard, Selfrenewal capacity of human epidermal Langerhans cells: observations made on a composite tissue allograft, Exp. Dermatol, vol.20, pp.145-146, 2011.

P. Petruzzo, A. Gazarian, J. Kanitakis, H. Parmentier, V. Guigal et al., Outcomes after bilateral hand allotransplantation: a risk/benefit ratio analysis, Ann. Surg, vol.261, pp.213-220, 2015.

R. G. Cohn, A. Mirkovich, B. Dunlap, P. Burton, S. H. Chiu et al., Mycophenolic acid increases apoptosis, lysosomes and lipid droplets in human lymphoid and monocytic cell lines, Transplantation, vol.68, pp.411-418, 1999.

A. F. Laurent, S. Dumont, P. Poindron, and C. D. Muller, Mycophenolic acid suppresses protein N-linked glycosylation in human monocytes and their adhesion to endothelial cells and to some substrates, Exp. Hematol, vol.24, pp.59-67, 1996.

K. S. Rogacev, A. M. Zawada, J. Hundsdorfer, M. Achenbach, G. Held et al., Immunosuppression and monocyte subsets, Nephrol. Dial. Transplant, vol.30, pp.143-153, 2015.

A. Sekerkova, E. Krepsova, E. Brabcova, J. Slatinska, O. Viklicky et al., CD14 + CD16 + and CD14 + CD163 + monocyte subpopulations in kidney allograft transplantation, BMC Immunol, vol.15, p.4, 2014.

C. Weber, K. U. Belge, P. Hundelshausen, G. Draude, B. Steppich et al., Differential chemokine receptor expression and function in human monocyte subpopulations, J. Leukoc. Biol, vol.67, pp.699-704, 2000.

A. T. Larregina, A. E. Morelli, L. A. Spencer, A. J. Logar, S. C. Watkins et al., Dermal-resident CD14 + cells differentiate into Langerhans cells, Nat. Immunol, vol.2, pp.1151-1158, 2001.

N. Mcgovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin et al., Human dermal CD14 + cells are a transient population of monocyte-derived macrophages, Immunity, vol.41, pp.465-477, 2014.

S. Tamoutounour, M. Guilliams, F. Sanchis, H. Liu, D. Terhorst et al., Origins and functional specialization of macrophages and of conventional and monocytederived dendritic cells in mouse skin, Immunity, vol.39, pp.925-938, 2013.

S. Yona, K. W. Kim, Y. Wolf, A. Mildner, D. Varol et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis, Immunity, vol.38, pp.79-91, 2013.

C. Caux, B. Vanbervliet, C. Massacrier, C. Dezutter-dambuyant, B. De-saintvis et al., CD34 + hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha, J. Exp. Med, vol.184, pp.695-706, 1996.

E. Gatti, M. A. Velleca, B. C. Biedermann, W. Ma, J. Unternaehrer et al., Large-scale culture and selective maturation of human Langerhans cells from granulocyte colony-stimulating factor-mobilized CD34 + progenitors, J. Immunol, vol.164, pp.3600-3607, 2000.

H. Strobl, E. Riedl, C. Scheinecker, C. Bello-fernandez, W. F. Pickl et al., TGF-b1 promotes in vitro development of dendritic cells from CD34 + hemopoietic progenitors, J. Immunol, vol.157, pp.1499-1507, 1996.

F. Geissmann, C. Prost, J. P. Monnet, M. Dy, N. Brousse et al., Transforming growth factor b1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells, J. Exp. Med, vol.187, pp.961-966, 1998.

G. Guironnet, C. Dezutter-dambuyant, C. Vincent, N. Bechetoille, D. Schmitt et al., Antagonistic effects of IL-4 and TGF-b1 on Langerhans cell-related antigen expression by human monocytes, J. Leukoc. Biol, vol.71, pp.845-853, 2002.

N. Hoshino, N. Katayama, T. Shibasaki, K. Ohishi, J. Nishioka et al., A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes, J. Leukoc. Biol, vol.78, pp.921-929, 2005.

M. Mohamadzadeh, F. Berard, G. Essert, C. Chalouni, B. Pulendran et al., Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells, J. Exp. Med, vol.194, pp.1013-1020, 2001.

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, J. Exp. Med, vol.179, pp.1109-1118, 1994.

C. Martínez-cingolani, M. Grandclaudon, M. Jeanmougin, M. Jouve, R. Zollinger et al., Human blood BDCA-1 dendritic cells differentiate into Langerhans-like cells with thymic stromal lymphopoietin and TGF-b, Blood, vol.124, pp.2411-2420, 2014.

P. Milne, V. Bigley, M. Gunawan, M. Haniffa, and M. Collin, CD1c + blood dendritic cells have Langerhans cell potential, vol.125, pp.470-473, 2015.

J. Péguet-navarro, C. Moulon, C. Caux, C. Dalbiez-gauthier, J. Banchereau et al., Interleukin-10 inhibits the primary allogeneic T cell response to human epidermal Langerhans cells, Eur. J. Immunol, vol.24, pp.884-891, 1994.

J. Valladeau, V. Duvert-frances, J. J. Pin, C. Dezutter-dambuyant, C. Vincent et al., The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface, Eur. J. Immunol, vol.29, pp.2695-2704, 1999.

F. Haspot, A. Lavault, C. Sinzger, K. Sampaio, Y. D. Stierhof et al., Human cytomegalovirus entry into dendritic cells occurs via a macropinocytosis-like pathway in a pH-independent and cholesterol-dependent manner, PLoS One, vol.7, p.34795, 2012.

M. Relloso, A. Puig-kröger, O. M. Pello, J. L. Rodríguez-fernández, G. De-la-rosa et al., DC-SIGN (CD209) expression is IL-4 dependent and is negatively regulated by IFN, TGF-b, and anti-inflammatory agents, J. Immunol, vol.168, pp.2634-2643, 2002.

L. Ziegler-heitbrock, P. Ancuta, S. Crowe, M. Dalod, V. Grau et al., Nomenclature of monocytes and dendritic cells in blood, Blood, vol.116, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

V. Bigley, N. Mcgovern, P. Milne, R. Dickinson, S. Pagan et al., Langerin-expressing dendritic cells in human tissues are related to CD1c + dendritic cells and distinct from Langerhans cells and CD141 high XCR1 + dendritic cells, J. Leukoc. Biol, vol.97, pp.627-634, 2015.

G. Nizzoli, J. Krietsch, A. Weick, S. Steinfelder, F. Facciotti et al., Human CD1c + dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses, Blood, vol.122, pp.932-942, 2013.

N. Yasmin, T. Bauer, M. Modak, K. Wagner, C. Schuster et al., Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation, J. Exp. Med, vol.210, pp.2597-2610, 2013.

T. Bauer, A. Zagórska, J. Jurkin, N. Yasmin, R. Köffel et al., Identification of Axl as a downstream effector of TGF-b1 during Langerhans cell differentiation and epidermal homeostasis, J. Exp. Med, vol.209, pp.2033-2047, 2012.

G. Eisenwort, J. Jurkin, N. Yasmin, T. Bauer, B. Gesslbauer et al., Identification of TROP2 (TACSTD2), an EpCAM-like molecule, as a specific marker for TGF-b1-dependent human epidermal Langerhans cells, J. Invest. Dermatol, vol.131, pp.2049-2057, 2011.

E. Riedl, J. Stöckl, O. Majdic, C. Scheinecker, W. Knapp et al., Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation, Blood, vol.96, pp.4276-4284, 2000.

A. Tang, M. Amagai, L. G. Granger, J. R. Stanley, and M. C. Udey, Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin, Nature, vol.361, pp.82-85, 1993.

N. Mayumi, E. Watanabe, Y. Norose, E. Watari, S. Kawana et al., E-cadherin interactions are required for Langerhans cell differentiation, Eur. J. Immunol, vol.43, pp.270-280, 2013.

N. Yasmin, S. Konradi, G. Eisenwort, Y. M. Schichl, M. Seyerl et al., 2013. b-Catenin promotes the differentiation of epidermal Langerhans dendritic cells, J. Invest. Dermatol, vol.133, pp.1250-1259

J. S. Mumm and R. Kopan, Notch signaling: from the outside in, Dev. Biol, vol.228, pp.151-165, 2000.

B. Z. Igyártó and D. H. Kaplan, Antigen presentation by Langerhans cells, Curr. Opin. Immunol, vol.25, pp.115-119, 2013.

G. Ratzinger, J. Baggers, M. A. De-cos, J. Yuan, T. Dao et al., Mature human Langerhans cells derived from CD34 + hematopoietic progenitors stimulate greater cytolytic T lymphocyte activity in the absence of bioactive IL-12p70, by either single peptide presentation or cross-priming, than do dermal-interstitial or monocyte-derived dendritic cells, J. Immunol, vol.173, pp.2780-2791, 2004.

B. Homey, W. Wang, H. Soto, M. E. Buchanan, A. Wiesenborn et al., Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ ILC), J. Immunol, vol.164, pp.3465-3470, 2000.

B. M. Lichtenberger, P. A. Gerber, M. Holcmann, B. A. Buhren, N. Amberg et al., Epidermal EGFR controls cutaneous host defense and prevents inflammation, Sci. Transl. Med, vol.5, 2013.

J. Czernielewski, P. Vaigot, and M. Prunièras, Epidermal Langerhans cells-a cycling cell population, J. Invest. Dermatol, vol.84, pp.424-426, 1985.

J. M. Czernielewski and M. Demarchez, Further evidence for the selfreproducing capacity of Langerhans cells in human skin, J. Invest. Dermatol, vol.88, pp.17-20, 1987.

P. Gogolak, B. Rethi, I. Szatmari, A. Lanyi, B. Dezso et al., Differentiation of CD1a 2 and CD1a + monocyte-derived dendritic cells is biased by lipid environment and PPARg, Blood, vol.109, pp.643-652, 2007.

A. M. Merlot, D. S. Kalinowski, and D. R. Richardson, Unraveling the mysteries of serum albumin-more than just a serum protein, Front. Physiol, vol.5, p.299, 2014.

T. Peters and . Jr, All about Albumin: Biochemistry, Genetics, and Medical Applications. Academic, 1996.

A. Dzionek, A. Fuchs, P. Schmidt, S. Cremer, M. Zysk et al., BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood, J. Immunol, vol.165, pp.6037-6046, 2000.

C. Hutter, M. Kauer, I. Simonitsch-klupp, G. Jug, R. Schwentner et al., Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells, Blood, vol.120, pp.5199-5208, 2012.

B. Z. Igyártó, K. Haley, D. Ortner, A. Bobr, M. Gerami-nejad et al., Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses, Immunity, vol.35, pp.260-272, 2011.

M. A. Ingersoll, R. Spanbroek, C. Lottaz, E. L. Gautier, M. Frankenberger et al., Comparison of gene expression profiles between human and mouse monocyte subsets, Blood, vol.115, pp.10-19, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01662522

P. Ancuta, K. Y. Liu, V. Misra, V. S. Wacleche, A. Gosselin et al., Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16 + and CD16 2 monocyte subsets, BMC Genomics, vol.10, p.403, 2009.

C. Zhao, H. Zhang, W. C. Wong, X. Sem, H. Han et al., Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods, J. Proteome Res, vol.8, pp.4028-4038, 2009.

C. Jakubzick, E. L. Gautier, S. L. Gibbings, D. K. Sojka, A. Schlitzer et al., Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes, Immunity, vol.39, pp.599-610, 2013.

J. C. Miller, B. D. Brown, T. Shay, E. L. Gautier, V. Jojic et al., Deciphering the transcriptional network of the dendritic cell lineage, Nat. Immunol, vol.13, pp.888-899, 2012.

K. Nagao, T. Kobayashi, K. Moro, M. Ohyama, T. Adachi et al., Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin, Nat. Immunol, vol.13, pp.744-752, 2012.

L. Egea, C. S. Mcallister, O. Lakhdari, I. Minev, S. Shenouda et al., GM-CSF produced by nonhematopoietic cells is required for early epithelial cell proliferation and repair of injured colonic mucosa, J. Immunol, vol.190, pp.1702-1713, 2013.

Y. Hirata, L. Egea, S. M. Dann, L. Eckmann, and M. F. Kagnoff, GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen, Cell Host Microbe, vol.7, pp.151-163, 2010.

M. Trutmann, L. Terracciano, C. Noppen, J. Kloth, M. Kaspar et al., GM-CSF gene expression and protein production in human colorectal cancer cell lines and clinical tumor specimens, Int. J. Cancer, vol.77, pp.378-385, 1998.

C. Schuster, C. Vaculik, C. Fiala, S. Meindl, O. Brandt et al., HLA-DR + leukocytes acquire CD1 antigens in embryonic and fetal human skin and contain functional antigenpresenting cells, J. Exp. Med, vol.206, pp.169-181, 2009.