H. Shizuya, Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector, Proc Natl Acad Sci, vol.89, pp.8794-8797, 1992.

K. Osoegawa, Bacterial artificial chromosome libraries for mouse sequencing and functional analysis, Genome Res, vol.10, pp.116-128, 2000.

M. A. Marra, High throughput fingerprint analysis of large-insert clones, Genome Res, vol.7, pp.1072-1084, 1997.
DOI : 10.1101/gr.7.11.1072

URL : http://genome.cshlp.org/content/7/11/1072.full.pdf

X. W. Yang, P. Model, and N. Heintz, Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome, Nat Biotechnol, vol.15, pp.859-865, 1997.

N. Heintz, BAC to the future: the use of bac transgenic mice for neuroscience research, Nat Rev Neurosci, vol.2, pp.861-870, 2001.

B. Charreau, L. Tesson, J. P. Soulillou, C. Pourcel, and I. Anegon, Transgenesis in rats: technical aspects and models, Transgenic Res, vol.5, pp.223-234, 1996.

C. A. Pinkert, Transgenic animal technology: a laboratory handbook, 2002.

, Scientific RepoRts |, vol.6

A. Abbott, Laboratory animals: the Renaissance rat, Nature, vol.428, pp.464-466, 2004.

D. E. Mosier, R. J. Gulizia, S. M. Baird, and D. B. Wilson, Transfer of a functional human immune system to mice with severe combined immunodeficiency, Nature, vol.335, pp.256-259, 1988.

G. C. Bosma, R. P. Custer, and M. J. Bosma, A severe combined immunodeficiency mutation in the mouse, Nature, vol.301, pp.527-530, 1983.
DOI : 10.1038/301527a0

R. Ito, T. Takahashi, I. Katano, and M. Ito, Current advances in humanized mouse models, Cell Mol Immunol, vol.9, pp.208-214, 2012.
DOI : 10.1038/cmi.2012.2

URL : https://www.nature.com/articles/cmi20122.pdf

L. D. Shultz, F. Ishikawa, and D. L. Greiner, Humanized mice in translational biomedical research, Nat Rev Immunol, vol.7, 2007.

T. Yamauchi, Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment, Blood, vol.121, pp.1316-1325, 2013.

K. Takenaka, Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells, Nat Immunol, vol.8, pp.1313-1323, 2007.

L. D. Shultz, Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice, J Immunol, vol.154, pp.180-191, 1995.

A. N. Barclay, Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function, Curr Opin Immunol, vol.21, pp.47-52, 2009.

A. N. Barclay, . Van-den, and T. K. Berg, The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target, Annu Rev Immunol, vol.32, pp.25-50, 2014.

P. A. Oldenborg, Role of CD47 as a marker of self on red blood cells, Science, vol.288, pp.2051-2054, 2000.

A. Kharitonenkov, A family of proteins that inhibit signalling through tyrosine kinase receptors, Nature, vol.386, pp.181-186, 1997.

T. Strowig, Transgenic expression of human signal regulatory protein alpha in Rag2-/-gamma(c)-/-mice improves engraftment of human hematopoietic cells in humanized mice, Proc Natl Acad Sci, vol.108, pp.13218-13223, 2011.

S. Menoret, Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases, FASEB J, vol.27, pp.703-711, 2013.

M. J. Fraser, T. Ciszczon, T. Elick, and C. Bauser, Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera, Insect Mol Biol, vol.5, pp.141-151, 1996.

R. Mitra, J. Fain-thornton, and N. L. Craig, piggyBac can bypass DNA synthesis during cut and paste transposition, EMBO J, vol.27, pp.1097-1109, 2008.

S. Ding, Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice, Cell, vol.122, pp.473-483, 2005.

C. Horn, Splinkerette PCR for more efficient characterization of gene trap events, Nat Genet, vol.39, pp.933-934, 2007.

C. J. Potter and L. Luo, Splinkerette PCR for mapping transposable elements in Drosophila, PLoS One, vol.5, p.10168, 2010.

A. G. Uren, A high-throughput splinkerette-PCR method for the isolation and sequencing of retroviral insertion sites, Nat Protoc, vol.4, pp.789-798, 2009.

R. Rad, PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice, Science, vol.330, pp.1104-1107, 2010.

R. Rad, A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer, Nat Genet, vol.47, pp.47-56, 2015.

A. Lacoste, F. Berenshteyn, and A. H. Brivanlou, An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells, Cell Stem Cell, vol.5, pp.332-342, 2009.

K. Woltjen, piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells, Nature, vol.458, pp.766-770, 2009.

L. E. Woodard and M. H. Wilson, piggyBac-ing models and new therapeutic strategies, Trends Biotechnol, vol.33, pp.525-533, 2015.

K. Yusa and . Piggybac-transposon, Microbiol Spectr, vol.3, 2015.

M. Rostovskaya, Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes, Genesis, vol.51, pp.135-141, 2013.

V. T. Chu, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat Biotechnol, vol.33, pp.543-548, 2015.

T. Maruyama, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nat Biotechnol, vol.33, pp.538-542, 2015.

J. D. Sander and J. K. Joung, CRISPR-Cas systems for editing, regulating and targeting genomes, Nat Biotechnol, vol.32, pp.347-355, 2014.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat Protoc, vol.8, pp.2281-2308, 2013.

T. Gaj, C. A. Gersbach, C. F. Barbas, T. Zfn, and C. , Cas-based methods for genome engineering, Trends Biotechnol, vol.31, pp.397-405, 2013.

D. F. Voytas and J. K. Joung, Plant science. DNA binding made easy, Science, vol.326, pp.1491-1492, 2009.

K. Yoshimi, ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes, Nat Commun, vol.7, p.10431, 2016.

S. Menoret, Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins, Sci Rep, vol.5, p.14410, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01271745

S. Adams, Signal-regulatory protein is selectively expressed by myeloid and neuronal cells, J Immunol, vol.161, pp.1853-1859, 1998.

S. Remy, Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases, Genome Res, vol.24, pp.1371-1383, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02164405

L. J. Mullins and J. J. Mullins, Transgenesis in the rat and larger mammals, J Clin Invest, vol.97, pp.1557-1560, 1996.

M. Buehr, Capture of authentic embryonic stem cells from rat blastocysts, Cell, vol.135, pp.1287-1298, 2008.

P. Li, Germline competent embryonic stem cells derived from rat blastocysts, Cell, vol.135, pp.1299-1310, 2008.

S. Meek, Efficient gene targeting by homologous recombination in rat embryonic stem cells, PLoS One, vol.5, p.14225, 2010.

N. G. Copeland and N. A. Jenkins, Harnessing transposons for cancer gene discovery, Nat Rev Cancer, vol.10, pp.696-706, 2010.

, Scientific RepoRts |, vol.6

H. Yang, H. Wang, and R. Jaenisch, Generating genetically modified mice using CRISPR/Cas-mediated genome engineering, Nat Protoc, vol.9, 1956.

K. Furushima, Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat, Genetics, vol.192, pp.1235-1248, 2012.

W. Li, Genetic modification and screening in rat using haploid embryonic stem cells, Cell Stem Cell, vol.14, pp.404-414, 2014.

L. Tesson, Knockout rats generated by embryo microinjection of TALENs, Nat Biotechnol, vol.29, pp.695-696, 2011.

A. M. Geurts, Knockout rats via embryo microinjection of zinc-finger nucleases, Science, vol.325, p.433, 2009.

T. Larcher, Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy, PLoS One, vol.9, p.110371, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190124

Q. Bian, A. S. Belmont, and . Bac, TG-EMBED: one-step method for high-level, copy-number-dependent, position-independent transgene expression, Nucleic Acids Res, vol.38, p.127, 2010.

N. Heintz, Gene expression nervous system atlas (GENSAT), Nat Neurosci, vol.7, p.483, 2004.

S. Gong, A gene expression atlas of the central nervous system based on bacterial artificial chromosomes, Nature, vol.425, pp.917-925, 2003.

W. C. Skarnes, A conditional knockout resource for the genome-wide study of mouse gene function, Nature, vol.474, pp.337-342, 2011.

J. Blesa and S. Przedborski, Parkinson's disease: animal models and dopaminergic cell vulnerability, Front Neuroanat, vol.8, p.155, 2014.

M. J. Justice, L. D. Siracusa, and A. F. Stewart, Technical approaches for mouse models of human disease, Dis Model Mech, vol.4, pp.305-310, 2011.

A. Doyle, M. P. Mcgarry, N. A. Lee, and J. J. Lee, The construction of transgenic and gene knockout/knockin mouse models of human disease, Transgenic Res, vol.21, pp.327-349, 2012.

H. Song, S. K. Chung, and Y. Xu, Modeling disease in human ESCs using an efficient BAC-based homologous recombination system, Cell Stem Cell, vol.6, pp.80-89, 2010.

O. M. Peters, Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice, Neuron, vol.88, pp.902-909, 2015.

M. A. Li, Mobilization of giant piggyBac transposons in the mouse genome, Nucleic Acids Res, vol.39, p.148, 2011.

M. L. Suster, G. Abe, A. Schouw, and K. Kawakami, Transposon-mediated BAC transgenesis in zebrafish, Nat Protoc, vol.6, 1998.

M. Rostovskaya, Transposon-mediated BAC transgenesis in human ES cells, Nucleic Acids Res, vol.40, 2012.

T. Mashimo, Generation and characterization of severe combined immunodeficiency rats, Cell Rep, vol.2, pp.685-694, 2012.

K. Zen, Inflammation-induced proteolytic processing of the SIRPalpha cytoplasmic ITIM in neutrophils propagates a proinflammatory state, Nat Commun, vol.4, p.2436, 2013.

N. C. Dubois, SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells, Nat Biotechnol, vol.29, pp.1011-1018, 2011.

A. P. Theocharides, Disruption of SIRPalpha signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts, J Exp Med, vol.209, pp.1883-1899, 2012.

I. K. Poon, C. D. Lucas, A. G. Rossi, and K. S. Ravichandran, Apoptotic cell clearance: basic biology and therapeutic potential, Nat Rev Immunol, vol.14, pp.166-180, 2014.

M. Maresca, V. G. Lin, N. Guo, and Y. Yang, Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining, Genome Res, vol.23, pp.539-546, 2013.

J. B. Renaud, Improved Genome Editing Efficiency and Flexibility Using Modified Oligonucleotides with TALEN and CRISPRCas9 Nucleases, Cell Rep, vol.14, pp.2263-2272, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371505

J. Beil, L. Fairbairn, P. Pelczar, and T. Buch, Is BAC transgenesis obsolete? State of the art in the era of designer nucleases, J Biomed Biotechnol, vol.308414, 2012.

L. Montoliu, C. T. Bock, G. Schutz, and H. Zentgraf, Visualization of large DNA molecules by electron microscopy with polyamines: application to the analysis of yeast endogenous and artificial chromosomes, J Mol Biol, vol.246, pp.486-492, 1995.

V. Chenouard, A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis, J. Genetics and Genomics, vol.43, pp.341-348, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02150677