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Abstract
Nutrigenomics investigates relationships between nutrients and all genome-encoded mo-

lecular entities. This holistic approach requires systems biology to scrutinize the effects of

diet on tissue biology. To decipher the adipose tissue (AT) response to diet induced weight

changes we focused on key molecular (lipids and transcripts) AT species during a longitudi-

nal dietary intervention. To obtain a systems model, a network approach was used to com-

bine all sets of variables (bio-clinical, fatty acids and mRNA levels) and get an overview of

their interactions. AT fatty acids and mRNA levels were quantified in 135 obese women at

baseline, after an 8-week low calorie diet (LCD) and after 6 months of ad libitum weight

maintenance diet (WMD). After LCD, individuals were stratified a posteriori according to

weight change during WMD. A 3 steps approach was used to infer a global model involving

the 3 sets of variables. It consisted in inferring intra-omic networks with sparse partial corre-

lations and inter-omic networks with regularized canonical correlation analysis and finally

combining the obtained omic-specific network in a single global model. The resulting net-

works were analyzed using node clustering, systematic important node extraction and clus-

ter comparisons. Overall, AT showed both constant and phase-specific biological

signatures in response to dietary intervention. AT from women regaining weight displayed

growth factors, angiogenesis and proliferation signaling signatures, suggesting unfavorable

tissue hyperplasia. By contrast, after LCD a strong positive relationship between AT myris-

toleic acid (a fatty acid with low AT level) content and de novo lipogenesis mRNAs was

found. This relationship was also observed, after WMD, in the group of women that
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continued to lose weight. This original system biology approach provides novel insight in

the AT response to weight control by highlighting the central role of myristoleic acid that

may account for the beneficial effects of weight loss.

Author Summary

Obesity is an excess fat mass leading to metabolic diseases. Dietary management is a con-
ventional strategy to promote weight loss. As energy buffering, in the form of esterified
fatty acids, and secretory organ, the adipose tissue has a pivotal role in obesity and its relat-
ed complications. A comprehensive insight of adipose tissue response during and after cal-
orie restriction might improve obesity management. Modern nutrition research study the
impact of diet on health by combining multiple datasets to provide an holistic view of tis-
sue physiopathology. To identify significant clusters of fatty acids, transcripts or bio-
clinical parameters related to weight change along calorie restriction and subsequent
weight follow-up in obese individuals, the issue of different datasets integration must be
resolved. Here, we implemented an innovative multistep approach to infer multi-data net-
works and compare clusters of network components. This original strategy highlighted an
unexpected central role of a minor adipose tissue fatty acid, myristoleic acid, which is not
provided by food. Its link to transcripts encoding enzymes from a pathway converting glu-
cose into fat that mediates favorable metabolic effects makes myristoleic acid a key factor
of the positive impact of fat mass reduction.

Introduction
The main function of adipose tissue (AT) is to store excess energy as triglycerides and to release
non-esterified fatty acids (FAs) for other tissues during periods of energy demand. AT also re-
leases numerous peptidic/proteic and lipidic factors with signaling functions [1–3]. Obesity is
characterized by an excess fat mass with deleterious health consequences. AT expansion results
in dysfunctional non-esterified FA release and imbalance in production of anti/pro-inflamma-
tory mediators [4]. Most of the obesity-related metabolic disturbances are reversible with
weight loss [5]. However in obese individuals, weight fluctuations are frequent since individu-
als involved in dieting-induced weight loss are often unsuccessful at long last [6, 7]. Adapta-
tions occurring in AT during dietary weight management programs remain unclear especially
regarding weight control after dieting [8]. The FA composition of AT reflects balance between
exogenous FAs from food, triglyceride hydrolysis/synthesis and FA synthesis from glucose-
derived acetylCoA, so-called de novo lipogenesis (DNL). Studies on FA composition of AT dur-
ing weight control trials are scarce [9, 10]. Low 16:1(cis-9) (palmitoleic acid) and 14:1(cis-9)
(myristoleic acid) may predict favorable weight control outcome [11].

Omics, especially transcriptome studies, have proved great potential in clarifying the role of
AT biology with respect to response in weight controlling trials [12]. However, analyses based
on single omics often do not provide enough information to understand biology. The integra-
tion of multiple omics may give a better understanding of a biological system as a whole. Global
network-based approaches authorize multiple datasets analyses and carry the advantage of
highlighting functionally related pathways and biological entities of potential relevance as hubs
[13]. Networks are valuable models to dissect complex traits [14]. However, integrative analysis
of datasets of different data types raises the issue of different scales of the multiple datasets. In
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gene expression networks, clusters are more robust than individual interactions [15]. Multivar-
iate statistical approaches were recently developed to jointly analyze omics datasets, dealing
with high dimension and using variable selection [16].

The present study aimed at revealing the characteristics of AT biological networks relevant
to clinical traits during a long-term dietary intervention (DI) including calorie restriction and
ad libitum follow-up after weight loss. Studies on human AT gene expression or lipidomic pro-
files from a systems biology point of view have only been reported at baseline [17, 18] but not
during DI. Network modeling has recently been applied using metagenomic, plasma and AT
inflammatory markers to predict weight changes during stabilized weight loss [19]. To our
knowledge, no study has jointly investigated AT lipidic and gene expression profiles, especially
during long-term DIs.

Here, the global AT networks were computed using FAs, mRNA levels, clinical risk factors
and biochemical markers according to weight changes in the same individuals. Our purpose
was to identify common as well as differential signatures with relationship to bio-clinical fac-
tors. The identification of novel AT features associated with weight regulation may influence
our understanding of weight control and authorize new advances in obesity management.

Materials and Methods

Source data
Ethics statement. The samples investigated in this paper were collected from 2006 to 2007 dur-
ing the DiOGenes study, a pan-European randomized DI trial which was approved by the eth-
ics committees of each of the 8 European centres participating to the program (registration no.
NCT00390637). Written informed consent was obtained from each patient according to the
local ethics committee of the participating countries: 1, Medical Ethics Committee of the Uni-
versity Hospital Maastricht and Maastricht University, The Netherlands; 2, The Committees
on Biomedical Research Ethics for the Capital region of Denmark, Denmark; 3, Suffolk Local
Research Ethics Committee, UK; 4, University of Crete Ethics Committee, Greece; 5, the Ethics
Commission of the University of Potsdam; 6, Research Ethics Committee at the University of
Navarra, Spain; 7, Ethical Committee of the Institute of Endocrinology, Czech Republic; 8, Eth-
ical Committee to the National Transport Multiprofile Hospital in Sofia, Bulgaria.

Study design. The data presented in this paper are part of those collected during the
DiOGenes study (contact information at www.diogenes-eu.org) The DiOGenes project investi-
gated the effects of diets with different content of protein and glycemic index on weight-loss
maintenance and metabolic and cardiovascular risk factors after a phase of calorie restriction,
in obese/overweight individuals. The trial protocol and supporting CONSORT checklist are
available as supporting information; see S1 Protocol and S1 Checklist. Healthy overweight
(body mass index (BMI)�27 kg/m2) individuals, aged<65 years were eligible for the study.
Exclusion criteria were BMI 45 kg/m2, liver or kidney diseases, cardiovascular diseases, diabe-
tes mellitus (type 1 or type 2), special diets/eating disorders, systemic infections/chronic dis-
eases, cancer within the last 10 years, weight change>3 kg within the previous 3 months, and
other clinical disorders or use of prescription medication that might interfere with the outcome
of the study. A detailed description of inclusion and exclusion criteria has been published pre-
viously [20]. BMI was calculated by dividing weight in kilograms by the square of height in me-
ters. Waist circumference was measured between the bottom of the ribs and the top of the hip
bone. A detailed description of the DiOGenes intervention trial and main outcomes can be
found in previous core publications [20–22]. Briefly, after the first clinical investigation day
(baseline), eligible individuals followed an active weight loss phase of 8-week low calorie
(3.3–4.2 MJ/d) diet (LCD) using commercial meal replacements (Modifast, Nutrition et Santé).
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The individuals with� 8% of initial body weight loss during LCD were randomized into one of
five ad libitum weight maintenance diets (WMD) for 6 months: 4 diets combining high and
low protein content with high and low glycemic index of carbohydrates, and a control low fat
(25–30% energy) diet according to National dietary guidelines on healthy diets [22]. During
WMD, the individuals were provided dietary instruction as described in [22]. Dietary intake
was assessed at screening, 4 weeks after the beginning and at the end of WMD. The subjects
were asked to complete a 3-day weighed food record, including 2-week days and 1 weekend
day. Dietary records were validated by a nutritionist. Clinical investigations including anthro-
pometric measures (height, weight, waist circumference, body composition), blood pressure
measurements, fasting blood sampling, and subcutaneous AT biopsies were performed at base-
line (BAS) and at the end of each phase. All procedures were standardized between the 8 study
centers across Europe [21]. Fig. 1 displays the organizational flowchart through the trial proto-
col and the individuals’ selection from the DiOGenes cohort for the present study.

Patients and adipose tissue study. Biopsy samples were stored at -80°C until total RNA
and FA extractions. The lipid fraction was extracted from the fat cake produced during total
RNA extraction using gas chromatography as described in [11]. The list of FA extracted from
the lipid fraction is presented in S1 Table. After RNA extraction the mRNA levels of a panel of
221 genes selected from previous published and unpublished DNAmicroarray analyses on lim-
ited number of individuals as described in [23] was assessed using high throughput real-time
PCR as described in [24]. S2 Table describes these genes according to biological pathways and
the biological function of the protein encoded. The list includes 68 genes previously shown as
markers of subcutaneous AT from obese insulin resistant subjects with metabolic syndrome
[25], 65 genes described as markers of subcutaneous AT from lean individuals [25], 33 genes
selected from previous caloric restriction induced weight loss studies [26, 27], 27 markers of
weight changes after caloric restriction [28], and 28 unpublished predictors of weight change
to distinguish between those subjects that will regain weight after LCD from those that will suc-
ceed weight maintaining based on the AT transcriptome at baseline or after the caloric restric-
tion phase. These genes encoded proteins involved in various pathways such as metabolism
(47.5% of the transcripts), immune response (19.5%), transport (4.5%), cell and tissue structure
(3.6%), signal transduction (2.3%) and response to stress (1.4%). A subgroup of the DiOGenes
cohort was selected based on the availability of the FA and gene profiling quality data. Here,
among the 214 individuals with both AT gene expression and FA content available at all steps
of the DI, i.e. BAS, LCD and WMD, only premenopausal women were studied (n = 135). After
LCD, the women were classified a posteriori into 3 separate groups according to weight changes
during WMD, calculated by subtracting body weight at LCD to body weight at WMD. Subjects
who experienced a weight loss or a weight regain greater or equal to 2 kg during WMD were
classified as weight losers (WL) (n = 45) or weight regainers (WR) (n = 51), respectively. Indi-
viduals with weight change of less than 2 kg were classified as stable weight (WS, n = 39).

Data availability statement. Raw and processed RT-qPCR data files were deposited at the
Gene Expression Omnibus depository and are available under series accession number
GSE60946. Other data data are available upon request.

Statistical analysis of clinical data, mRNA levels and adipose tissue fatty
acids
Data were first analyzed by multivariate statistical methods using principal component analysis
to detect center or diet group biases and mean-centered transformed if needed. Gaussian distri-
bution of data was tested using the Kolmogorov–Smirnov test and log transformed adequately.
Differences in clinical data, mRNA and FAs between BAS, end of LCD and end of WMD were
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Figure 1. Flowchart for individuals’ selection from the DiOGenes cohort. Participants entering subsequent phases of the study as well as dropouts are
indicated in total. AT, adipose tissue; CID, clinical investigation day; FA, fatty acids; HGI, high glycemic index; HP, high protein content; LCD, low calorie diet;
LGI, low glycemic index; LP, low protein content; WMD, weight maintenance diet.

doi:10.1371/journal.pcbi.1004047.g001
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tested using one-factor repeated measure ANOVA with Bonferroni post-hoc test. The differ-
ences between each group (WL, WR andWS) at each step of the DI were tested with one-factor
ANOVA and Bonferroni post-hoc test. Fatty acids and gene expression data were controlled
for multiple testing by using Benjamini-Hochberg P value correction (q-value) [29]. Analyses
were performed with SPSS Statistics 17.0 software (SPSS Inc., Chicago, Ill).

Network inference
The network analysis was performed as illustrated in Fig. 2: for BAS, the end of LCD and the 3
groups at the end of WMD (WR, WL and WS), a system model was designed using a global
network. The network was built using a 3 step approach. A first step consisted in inferring a
network in each set of variables (bio-clinical, FAs and mRNA level) using a sparse Graphical
Gaussian Model (GGM, [30]). This model is based on the assumption that, in each set of vari-
ables, the distribution of the variables, (Xj)j = 1 . . . p’ is Gaussian N(0, ∑) and that the observa-
tions obtained for all individuals are independent and identically distributed. The method then
unravels the conditional dependency structure of the variables, i.e., defines a network whose
edges correspond to positive or negative partial correlations P(Xj, Xj’j(Xk)k 6¼j, j’) Using a maxi-
mum likelihood approach, the method performs an edge selection, simultaneously to the esti-
mation of partial correlations. Unlike simple correlation, partial correlation is a mean to assess
direct correlations between pairs of variables, independently of the other variables and is thus

Figure 2. Workflow of the network analysis. Intra- and inter-omics networks were first inferred separately before a global merging for each time step: at
baseline, after a 8-week low calorie diet and after weight maintenance diet (3 groups). Node clustering was then performed and clusters were systematically
analyzed with most important nodes extraction and across time comparison. Resulting products of each step are given in purple and significant tests to
assess the validity of the approach are given in yellow.

doi:10.1371/journal.pcbi.1004047.g002
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closer to a causality relation than simple correlation. The number of selected edges was chosen
according to the description given in step 3 below. A second step consisted in inferring a net-
work between each pairs of two different sets of variables among bio-clinical, FAs and mRNA
level sets. To do so, we used the approach that was proven successful to infer a gene/phenotype
network in [31]: regularization canonical correlation analysis (CCA, [16, 32]). The additional
regularization constraint was used to deal with the large number of variables as compared to
the number of observations. The number of selected edges was chosen according to the de-
scription given in step 3 below. A third step consisted in merging the 3 networks obtained in
the first step with the 3 networks obtained in the second step. As the number of variables in the
3 datasets was very different (from 15 bio-clinical variables up to 221 gene expressions), a naive
strategy consisting in estimating the selected edges in each set of variables (or in each pair of
two sets) in a same manner would have led to give too much importance on the largest set of
variables, i.e., to the gene expression dataset. The number of selected edges was thus adjusted to
be equal to the number of nodes in each set (or pair of sets) of variables, leading to smaller den-
sities for the largest networks.

The first step of the analysis was performed using the R package glasso (cran.r-project.org/
web/packages/glasso) and the second step using the R package mixOmics (http://perso.math.
univ-toulouse.fr/mixomics).

Global network analysis. To stress out the macro-structure of the network, a spin-glass
model and simulated annealing were used to maximize the modularity quality measure [33]
and obtain a vertex clustering [34] for all 5 networks.

The significance of the clustering was assessed using a permutation test as described in [35]:
the clustering was declared significant if the obtained modularity was larger than the maximum
modularity found over 100 random graphs with the same degree distribution than the graph
under study. Random graphs with identical degree distributions were generated using a permu-
tation of the edges as justified by [36].

Sub-network analysis. Significance of the betweenness within a cluster was assessed using a
permutation test to check if the betweenness was significantly high regarding the node’s degree
in its cluster. A significant result (p<0.05) indicates a node more central than expected in the
graph and a non-significant (p�0.05) result indicates a node which centrality is expected for
the node’s degree. For nodes with a high degree (so-called hubs), a non-significant result does
not however indicate that the node is not important within its cluster: its importance is already
acknowledged by its many connections with the other nodes. But, provided its degree, it is not
particularly central. Significant betweenness was thus used as a measure of importance of the
hubs in the networks (even though hubs were systematically investigated, it provided an addi-
tional information on the node’s critical role). The permutation test was performed in a way
similar to the modularity test: the highest betweenness over 100 random graphs with the same
degree distribution was compared to all observed betweenness. The nodes with an observed be-
tweenness in the top 5% were declared significant. The network analysis (node clustering and
betweenness calculation) was performed with the R package igraph (igraph.org; [37]).

Finally, clusters with identical central nodes in two different networks were tested for the sig-
nificance of the number of common nodes using a Fisher exact test with the set of all variables
as reference: pairs of clusters with a p-value smaller than 5% in the Fisher exact test are those
that have a larger number of common nodes than what was expected by random chance only.

Sub-graphs (clusters) were laid out using force-based algorithms in Gephi 0.8.2 software
(gephi.org, [38, 39]). Nodes’ sizes indicate degree, i.e., the number of edges adjacent to the
node. Nodes with the largest degrees, called hubs, were systematically extracted. Nodes’ colors
and font size indicate betweenness centrality, a measure that counts how often a node appears
on shortest paths between two other nodes in the network. Therefore, betweenness centrality
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indicates nodes that are the most likely to disconnect the network if removed. The variables are
connected by an edge only if they have been selected by the sparse estimation. Edge thickness is
proportional to the strength of the correlation (CCA) or of the partial correlation (GGM) but
should only be compared for a given set of estimation (i.e., partial correlation strength between
two pairs of genes can be compared but should not be compared to correlation between a gene
and a FA or a bio-clinical parameter).

The biological functions represented by mRNAs from each cluster were searched using In-
genuity Pathways Analysis (IPA) software version 7.5 (Ingenuity Systems, Redwood City, CA).
The significance of canonical pathways was tested using the Fisher Exact test with the set of
221 genes as reference. Data were controlled for multiple testing by using Benjamini-Hochberg
P value correction.

Results

Obese individuals’ description
Baseline anthropometric and clinical characteristics of the 135 women are displayed in Table 1.
After the end of LCD, individuals were a posteriori classified into 3 groups according to weight
changes during WMD. To ensure that there was no striking between group difference at base-
line and after LCD, bio-clinical variables, gene expression and FA profiles were also analyzed
a posteriori according to weight control classification.

At baseline, women fromWL group had higher weight and BMI than those fromWS
groups (Table 2). Weight loss induced by LCD was similar in the 3 groups even though mean
weight in WL group remained higher than in WS group after the LCD. Plasma adiponectin

Table 1. Baseline anthropometric and clinical characteristics of the 135 obese women.

Parameters Mean ± SEM Range Median

Age (y) 42.4 ± 0.6 24–58 42.0

Dietary intake (kJ/day) 8568 ± 225 2116–15677 8557

Weight (kg) 94.0 ± 1.3 66.6–149.7 91.6

BMI (kg/m²) 34.3 ± 0.4 26.8–47.7 33.4

Fat Mass (%) 43.4 ± 0.5 28.6–56.6 42.7

Waist (cm) 103 ± 1 74–142 102

SBP (mmHg) 124 ± 1 89–165 122

DBP (mmHg) 77 ± 1 50–104 78

Total cholesterol (mmol/l) 4.8 ± 0.1 2.3–6.9 4.8

Triglycerides (mmol/l) 1.3 ± 0.05 0.4–3.1 1.1

HDL cholesterol (mmol/l) 1.3 ± 0.03 0.6–2.2 1.3

LDL cholesterol (mmol/l) 3.0 ± 0.1 1.3–5.0 2.9

Fasting glucose (mmol/l) 5.0 ± 0.1 1.7–7.6 5.0

Fasting insulin (µIU/ml) 9.8 ± 0.5 2.5–31.8 8.4

HOMA-IR 2.2 ± 0.1 0.4–10.3 1.8

Fructosamine (µmol/l) 207.1 ± 2.2 127–338 208

Adiponectin (µg/ml) 10.7 ± 0.5 0.6–30.1 9.8

CRP (mg/l) 4.2 ± 0.3 0.3–21.9 3.3

BMI, body mass index; CRP, C reactive protein; DBP, diastolic blood pressure; HDL, high density

lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low density lipoprotein;

SBP, systolic blood pressure.

doi:10.1371/journal.pcbi.1004047.t001
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was higher at baseline in WL group compared to WR and WS groups. During LCD, there was
no intergroup difference in bio-clinical changes. All parameters improved except plasma fruc-
tosamine and adiponectin. S3 Table displays the anthropometric and clinical characteristics at
the end of the weight maintenance phase according to weight control group and by randomiza-
tion arm. During WMD, women fromWL group lost 7.0 ± 0.4 kg compared to the end of LCD
and those fromWR group regained 5.0 ± 0.4 kg. Adiponectin improved during WMD only in
WL group. There was no difference regarding age, center (data not shown) or distribution of
the 5 WMD dietary arms between groups (S3 Table). There was no intergroup difference in
changes in dietary intake along DI (S1 Fig.).

Adipose tissue gene expression and fatty acid content
A bunch of 221 mRNA (S2 Table) selected from previous AT investigations using microarrays
was quantitatively assessed using RT-qPCR. Among these genes, 155 genes were down-regulated
during LCD. The most representative pattern was a down-regulation during LCD and up-

Table 2. Anthropometric and clinical characteristics of women according to weight control groups during dietary intervention.

WR (n = 51) WS (n = 39) WL (n = 45)

Age at screening (y) 42.4 ± 0.9 41.5 ± 1.1 43.2 ± 1.0

BAS LCD WMD BAS LCD WMD BAS LCD WMD

Weight (kg) 92.5 ± 2.5 82.7 ± 1.91 87.7 ± 2.01, 3 90.7 ± 1.93 80.4 ± 1.51, 3 80.5 ± 1.51, 4 99.8 ± 3.7 88.0 ± 2.51 81.2 ± 2.31, 2

BMI (kg/m²) 33.8 ± 0.7 30.3 ± 0.61 32.2 ± 0.61, 2, 3 33.3 ± 0.63 29.6 ± 0.51 29.7 ± 0.61, 4 35.9 ± 0.8 31.8 ± 0.71 19.3 ± 0.61, 2

Fat Mass (%) 43.9 ± 0.7 40.2 ± 1.11 41.5 ± 0.91 41.9 ± 0.8 38.4 ± 1.01 37.5 ± 0.81, 4 44.2 ± 0.9 39.6 ± 0.91 36.3 ± 0.91, 4

Waist (cm) 103 ± 1 95 ± 11 98 ± 11, 3 101 ± 1 91 ± 11 92 ± 11, 4 105 ± 2 95 ± 21 90 ± 21, 2

SBP (mmHg) 121 ± 2 113 ± 21 119 ± 1 123 ± 2 117 ± 21 120 ± 2 128 ± 2 120 ± 21 121 ± 21

DBP (mmHg) 74 ± 14 71 ± 1 74 ± 2 77 ± 2 73 ± 2 74 ± 2 80 ± 2 75 ± 11 75 ± 11

Total Cholesterol
(mmol/l)

4.8 ± 0.1 4.3 ± 0.11 4.9 ± 0.12 4.9 ± 0.1 4.2 ± 0.11 4.8 ± 0.12 4.8 ± 0.1 4.3 ± 0.11 4.8 ± 0.12

Triglycerides (mmol/l) 1.3 ± 0.08 1.1 ± 0.06 1.2 ± 0.07 1.2 ± 0.08 0.9 ± 0.061 0.9 ± 0.051, 5 1.3 ± 0.09 1.2 ± 0.07 1.1 ± 0.071

HDL (mmol/l) 1.3 ± 0.04 1.2 ± 0.041 1.44± 0.042 1.3 ± 0.06 1.2 ± 0.06 1.5 ± 0.072 1.3 ± 0.06 1.2 ± 0.041 1.5 ± 0.051, 2

LDL (mmol/l) 2.9 ± 0.1 2.6 ± 0.1 2.9 ± 0.12 3.0 ± 0.1 2.5 ± 0.11 2.9± 0.12 2.9 ± 0.1 2.6 ± 0.1 2.8 ± 0.12

Fasting glucose
(mmol/l)

5.1 ± 0.1 4.7 ± 0.11 4.9 ± 0.12 5.1 ± 0.1 4.8 ± 0.1 4.9 ± 0.1 5.0 ± 0.1 4.8 ± 0.1 4.8 ± 0.1

Fasting insulin (µIU/
ml)

9.6 ± 0.8 7.2 ± 0.51 8.6 ± 0.6 10.3 ± 1.0 6.5 ± 0.61 6.8 ± 0.61 9.7 ± 0.9 8.0 ± 0.81 8.4 ± 1.0

HOMA-IR 2.2 ± 0.2 1.5 ± 0.11 1.8 ± 0.1 2.3 ± 0.3 1.3 ± 0.11 1.5 ± 0.11 2.2 ± 0.3 1.6 ± 0.2 1.8 ± 0.3

Fructosamine (µmol/l) 207 ± 3 207 ± 3 215 ± 32 209 ± 50 209 ± 4 219 ± 41, 2 205 ± 4 211 ± 3 218 ± 3

Adiponectin (µg/ml) 10.2 ± 0.6 10.7 ± 0.5 11.6 ± 0.6 9.1 ± 0.63 9.9 ± 0.6 10.7 ± 0.83 12.9 ± 1.04 11.2 ± 0.6 13.6 ± 0.82

CRP (mg/l) 4.0 ± 0.5 2.5 ± 0.31 2.9 ± 0.4 4.4 ± 0.6 3.6 ± 0.6 2.1 ± 0.41 4.3 ± 0.6 4.2 ± 0.6 3.4 ± 0.5

Anthropometric, clinical and plasma parameters were determined at baseline (BAS), after 8 weeks of low calorie diet (LCD), and after 6 months of weight

maintenance diet (WMD) according to weight control groups during dietary intervention (WR, weight regain group; WS, weight stable group; WL, weight

loss group). BMI, body mass index; CRP, C reactive protein; DBP, diastolic blood pressure; HDL, high density lipoprotein; HOMA-IR, homeostatic model

assessment of insulin resistance; LDL, low density lipoprotein; SBP, systolic blood pressure. Variables are shown as means ± SEM. The effect of time

was analyzed by repeated measures ANOVA with Bonferroni post hoc test: 1 p < 0.05, data significantly different from BAS. 2 p < 0.05, data significantly

different from LCD. Between group difference was analyzed by one-way ANOVA with Bonferroni post hoc test: 3 p < 0.05, data significantly different from

WL group. 4 p < 0.05, data significantly different from WR group.

doi:10.1371/journal.pcbi.1004047.t002
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regulation duringWMD. The most regulated genes in the 3 groups, SCD and FASN, encoded
enzymes for different steps of FA synthesis, stearoyl CoA desaturase and fatty acid synthase, re-
spectively (S2 Fig.).

S3 Table displays the AT changes in FA composition. At baseline, in WL group, AT had
higher percentages of polyunsaturated FAs (PUFAs) and lower saturated FAs (SFAs) and
mono unsaturated FAs (MUFAs) compared with other groups. SFAs and MUFAs exhibited
the most representative changing course during DI. During LCD, in WL group, 2 SFAs (12:0
and 14:0) and 2 MUFAs (14:1(cis-9) and 16:1(cis-9)) AT content decreased. Three other
MUFAs (18:1(cis-9), 20:1(cis-11), 16:1(cis-7)), and 4 PUFAs, including 20:4(cis-5, 8, 11, 14),
increased. Altogether, after WMD, the AT fromWL and WS groups had similar FA profile
than after LCD. In the WR group, the FA content returned to baseline values. The greatest
changes were an increase in 12:0, and 14:1(cis-9) and a decrease of 18:1(cis-9) percentages.

S3 Fig. displays SCD activities assessed using 14:1(cis-9)/14:0, 16:1(cis-9)/16:0 and
18:1(cis-9)/18:0 ratios and showed no between group difference at baseline and after LCD. At
the end of WMD, 14:1(cis-9)/14:0 and 16:1(cis-9)/16:0, but not 18:1(cis-9)/18:0, were higher in
WR compared to WL group.

Adipose tissue network inference and clustering
Network inference was performed using the 3 step inference method (see Materials and
Methods) at baseline, at the end of LCD, and in the 3 groups at the end of WMD, resulting in 5
global networks. Then, to stress out the macro structure of the network, a vertex clustering
was performed.

All 5 clustering performed on the 5 global networks were found to have a significantly high
modularity, proving the relevance of the sub-graphs (clusters).

At baseline. Before LCD, among 14 clusters detected, 9 displayed more than 6 vertices. In-
sulin, waist circumference and 18:1(cis-9) were central nodes of 3 of the clusters containing at
least 2 types or variables (bio-clinical, FAs or mRNAs) (Fig. 3).

Insulin was the variable with most significant betweenness centrality (p-value = 0.03) among
the most central nodes of the 3 clusters. The insulin-centered cluster contained plasma glucose
and mRNA encoding proteins involved in “Adhesion and Diapedesis” as major canonical path-
way according to IPA analysis. This included various cytokines (CCL2, CCL18) and metallopro-
teases (MMP9, MMP19) with positive correlation to fasting insulin. Most of these genes were
negatively linked to 18:0 and positively linked to 16:1(cis-9). The module whose hubs were
waist circumference (degree: 27; p-value of waist circumference betweenness centrality = 0.39—
not significant) and HDL (betweenness centrality p-value = 0.36—not significant) showed re-
spectively positive and negative correlations with genes involved in an “Immune Response”
gene expression IPA signature (CD163, CCL3, CCL19, C1QC, C2, IL10 and FCGBP). Adiponec-
tin was negatively connected to part of these immune response genes and 18:1(cis-11).
Among genes negatively connected to waist circumference were AZGP1 and GPD1L, whose
lower expression in AT frommetabolic syndrome (MetS) individuals was previously de-
scribed [24]. The most significant mRNA signature of the module organized around 18:1(cis-9)
(degree: 38; betweenness centrality p-value = 0.85—not significant) was “Fatty Acid Biosynthe-
sis”. Transcripts of this path included all desaturases (SCD, FADS1 and FADS2), ALDH6A1
and ACSL1. Like AACS and LPIN1, two other transcripts involved in lipid metabolism, all
transcripts but ALDH6A1 were positively and negatively connected to 14:1(cis-9) and
18:1(cis-9), respectively.

Effect of an 8-week active weight loss. After LCD, vertex clustering detected 10 modules of
which 7 had more than 6 nodes. Fig. 4 displays the 4 modules with at least 2 types of variables.
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Hubs were 14:0 (degree: 49; betweenness centrality p-value< 0.01), waist circumference
(degree: 38; betweenness centrality p-value: 0.98—not significant), 14:1(cis-9)) (degree: 10;
betweenness centrality p-value< 0.01), and 18:2(cis-9, 12) (degree: 34; betweenness centrality
p-value: 0.38—not significant).

The 14:0 centered module also contained adiponectin as central node. The most significant
mRNA signature was “Growth Hormone Signaling”. The transcripts from this signature (GHR,
IGF1, IRS1, andMAPK3) were all positively connected to 3 saturated FAs, i.e. 12:0, 14:0 or 18:0
as well as to adiponectin. The module with waist circumference as hub also included BMI as
high degree (35) and high centrality node. The most significant mRNA signature was “Adhe-
sion and Diapedesis”. Transcripts from this signature (CCL2, CCL3, CCL18, CCL19, FN1 and
MMP19) were all positively connected to waist circumference, exceptMMP19. CCL3 was posi-
tively connected to waist circumference whereas GPD1L and AZGP1 were negatively connected
to this abdominal adiposity marker. In this module, 16:1(cis-9) was negatively connected to
GPD1L and positively to anthropometric parameters, plasma triglycerides and insulin. The
module with highest degree node 14:1(cis-9) encompassed genes involved in “Fatty Acid Bio-
synthesis” (SCD, FADS1 and FADS2) as well as SLC2A4, FASN, SREBP1, PNPLA2 and

Figure 3. Baseline adipose tissue networks of obese women. A sparse Graphical Gaussian Model (GGM) was used to estimate partial correlations in
each set of variables and regularized canonical correlation analysis (CCA) was used to assess links between paired sets of variable. Clustering was
performed using a spin glass model and simulated annealing. This analysis displays the variables that are connected independently from other variables.
Graphs were laid out using force-based algorithms in Gephi 0.8.2 software. Nodes’ colors and font size indicate betweenness centrality. The red nodes have
the highest betweenness and the green nodes the lowest one. Edge thickness is proportional to the strength of the correlation (CCA) or of the partial
correlation (GGM). Edge color indicates the correlation sign: red for positive correlations and blue for negative ones. BMI, body mass index; CRP, C reactive
protein; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; SBP, systolic blood pressure; TG, plasma triglycerides;
waist, waist circumference.

doi:10.1371/journal.pcbi.1004047.g003

Adipose Tissue Patterns during and after Dieting

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004047 January 15, 2015 11 / 22



PNPLA3 in a positive manner. Of note, all of these genes were significantly down-regulated
during LCD. The 18:2(cis-9, 12) with highest degree node mostly contained transcripts with
negative relationship to this FA. These transcripts included those encoding proteins involved
in triglyceride metabolism (LIPE, DGAT1, DGAT2 and AGPAT1).

After 6 months weight maintenance diet. Vertexes classification was performed and the
most important heterogeneous clusters with more than 6 nodes are presented in Figs. 5 and 6.
Since WS group showed intermediary phenotype, we focused on WR and WL groups.

Individuals regaining weight. Of 12 modules, classification detected 5 heterogeneous clus-
ters of interest. As displayed in Fig. 4, the systolic blood pressure (degree: 34; betweenness cen-
trality p-value = 0.05) and waist circumference (degree: 32; betweenness centrality p-value =
0.33—not significant) hubs showed negative relationship of these nodes with a “Sucrose, Sero-
tonin and Adrenalin Degradation” IPA signature made of ADHFE1, ALDOB, ALDOC, C2 and
MAOA. These central nodes were also negatively connected to AZGP1 and GPD1L and posi-
tively to IL10. The module converging on fructosamine (degree: 10; betweenness centrality

Figure 4. Adipose tissue networks of obese women after a 8-week low calorie diet. A sparse Graphical Gaussian Model (GGM) was used to estimate
partial correlations in each set of variables and regularized canonical correlation analysis (CCA) was used to assess links between paired sets of variable.
Clustering was performed using a spin glass model and simulated annealing. This analysis displays the variables that are connected independently from
other variables. Graphs were laid out using force-based algorithms in Gephi 0.8.2 software. Nodes’ colors and font size indicate betweenness centrality. The
red nodes have the highest betweenness and the green nodes the lowest one. Edge thickness is proportional to the strength of the correlation (CCA) or of the
partial correlation (GGM). Edge color indicates the correlation sign: red for positive correlations and blue for negative ones. BMI, body mass index; CRP, C
reactive protein; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; SBP, systolic blood pressure; TG, plasma
triglycerides; waist, waist circumference.

doi:10.1371/journal.pcbi.1004047.g004
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p-value = 0.12—not significant) showed no FA but a “Growth Hormone Signaling”mRNA sig-
nature that included IRS1, FGF2, IGF1 and GHR, the 2 former transcripts being significantly
up-regulated duringWMD in theWR group and the latter positively connected to fructosamine
via FGF2. In the module organized around 14:1(cis-9) (degree: 16; betweenness centrality
p-value = 0.62—not significant) the most significant mRNA signature was “Cancer Signal”
mainly represented by transcripts up-regulated duringWMD, i.e. CCND1, CYCS, E2F4, ITGB2,
andMAPK3. 16:1(cis-9) was another hub (degree: 12) positively connected to 14:1(cis-9).

Two modules were with saturated FAs as hubs. The first one focused on 18:0 (degree: 20; be-
tweenness centrality p-value = 0.09—not significant) and contained a large array of poly-
unsaturated FAs plus 18:1(cis-9) which amount significantly decreased during WMD, exclu-
sively in WR group. The most significant mRNA signature was “Adhesion and Diapedesis”
(CCL18, CCL19, CCL3 and IL1RN). The second cluster was organized around 14:0 (degree: 42;
betweenness centrality p-value = 0.66—not significant) which was positively connected to 16:0
and 12:0. The most significant mRNA signature was “Angiogenesis Inhibition by TSP1”,

Figure 5. Adipose tissue networks duringmaintenance phase in women regaining weight. A sparse Graphical Gaussian Model (GGM) was used to
estimate partial correlations in each set of variables and regularized canonical correlation analysis (CCA) was used to assess links between paired sets of
variable. Clustering was performed using a spin glass model and simulated annealing. This analysis displays the variables that are connected independently
from other variables. Graphs were laid out using force-based algorithms in Gephi 0.8.2 software. Nodes’ colors and font size indicate betweenness centrality.
The red nodes have the highest betweenness and the green nodes the lowest one. Edge thickness is proportional to the strength of the correlation (CCA) or
of the partial correlation (GGM). Edge color indicates the correlation sign: red for positive correlations and blue for negative ones. BMI, body mass index;
CRP, C reactive protein; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; SBP, systolic blood pressure; TG, plasma
triglycerides; waist, waist circumference.

doi:10.1371/journal.pcbi.1004047.g005
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especially VEGFA, an mRNA up-regulated during WMD and positively connected to 14:0, and
MMP9 with negative relationship to 14:0. The SCD, FADS2, ELOVL5 and SREBP1 transcripts
involved in DNL were positively connected to 12:0, 14:0 or 16:0.

Individuals with continued weight loss. Of 11 modules, the 3 heterogeneous clusters are
presented in Fig. 5. The 14:1(cis-9) centered module (degree: 21; betweenness centrality
p-value = 0.01) encompassed genes involved in DNL, i.e. AACS, FASN, SCD, FADS1, FADS2
and ELOVL5. All were positively correlated to 14:1(cis-9). The AACS, SCD, FADS1 and
ELOVL5mRNA levels increased during WMD. The most complex path was based on waist cir-
cumference (degree: 38; betweenness centrality p-value = 0.23—not significant) and incorpo-
rates BMI, weight, C reactive protein (CRP) and 20:4(cis-5, 8, 11, 14) as nodes with high
centrality. AZGP1 and GPD1L were negatively connected to waist circumference. The most sig-
nificant mRNA signature was “Complement Adhesion and Diapedesis”. This included CCL3,
CCL18 and CCL19, C1QA, C1QB and C1QC that displayed significantly decreased mRNA lev-
els during WMD and positive correlation with waist circumference. All FAs were n-6 with

Figure 6. Adipose tissue networks duringmaintenance phase in women with continued weight loss. A sparse Graphical Gaussian Model (GGM) was
used to estimate partial correlations in each set of variables and regularized canonical correlation analysis (CCA) was used to assess links between paired
sets of variable. Clustering was performed using a spin glass model and simulated annealing. This analysis displays the variables that are connected
independently from other variables. Graphs were laid out using force-based algorithms in Gephi 0.8.2 software. Nodes’ colors and font size indicate
betweenness centrality. The red nodes have the highest betweenness and the green nodes the lowest one. Edge thickness is proportional to the strength of
the correlation (CCA) or of the partial correlation (GGM). Edge color indicates the correlation sign: red for positive correlations and blue for negative ones.
BMI, body mass index; CRP, C reactive protein; DBP, diastolic blood pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; SBP, systolic
blood pressure; TG, plasma triglycerides; waist, waist circumference.

doi:10.1371/journal.pcbi.1004047.g006
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positive relationship to waist circumference, weight and BMI. Especially, the 20:4(cis-5, 8, 11,
14) had positive correlation to CRP. The module organized around 18:1(cis-11) (degree: 17; be-
tweenness centrality p-value = 0.11—not significant) contained low density lipoproteins, cho-
lesterol and adiponectin but showed no enriched mRNA signature.

Discussion
Both lipids and transcripts (as frames for protein synthesis) are important components of AT bi-
ology. To identify interactions between these molecular species we investigated the networks of
AT esterified FAs and mRNAs together with bio-clinical data in obese women according to
weight changes along a longitudinal DI. The present study is the first to jointly investigate gene
expression and lipidome from the same biopsy of AT in such a large number of obese individuals.

Networks are useful models to investigate a set of relations between variables. In particular,
network clusters in gene networks are more robust, i.e., less influenced by measurement noise,
than each individual relation [15, 40]. In the present case, the strength of the relations between
the different sets of variables (e.g., the strength of the relation between two transcripts or the
strength of the relation between a transcript and a FA level) have very different scales. This ca-
veat is controlled using a non-global inference approach, in order to have a global model of the
interactions between all sets of variables. The regularized CCA has previously been used in
combination with sparse partial least squares regression to investigate AT transcriptionally co-
ordinated paths correlated with PUFA intake during the LIPGENE study [17]. Here, we used a
3-step inference method to infer a global model using 3 datasets: first, inferring a network in
each dataset using a sparse GGM; second, inferring a network between each pairs of two differ-
ent sets of variables using regularized CCA; third, merging the 3 networks obtained during the
first step with the 3 networks resulting from the second step. As the numbers of variables in the
3 datasets were very different (from 15 bio-clinical variables up to 221 mRNA levels), a simple
strategy consisting in estimating the selected edges in each set of variables (or in each pair of
two sets) in a same manner would have led to give too much importance on the largest set of
variables, i.e., to the gene expression dataset. The number of selected edges was thus adjusted to
be equal to the number of nodes in each set (or pair of sets) of variables, leading to smaller den-
sities for the largest networks. To improve the significance of our findings, systematic statistical
tests were performed to test the significance of the betweenness centrality of the nodes com-
pared to their degrees. Significance of nodes indicates that, given their degrees, they have a be-
tweenness larger than expected and are thus significantly central in their clusters.

Our study showed both constant and specific biological signatures in response to different
weight control phases relevant to distinct metabolic features. We focused on body weight
changes and especially according to weight control 6 months after calorie restriction. The pres-
ent combination of network inference and node clustering enabled to draw a picture of tran-
script-FA-bioclinical variables interactions at each step of the longitudinal dietary intervention,
leading to highlight the unexpected pivotal position of myristoleic acid (14:1(cis-9)). This FA
was linked to DNL transcripts during active and continued weight loss. It is to be noted that,
after WMD, the WR group merely displayed specific AT signatures never found at baseline or
during weight loss.

The most striking invariable feature was the presence of waist circumference as central node
along all steps of the DI. To check similarity between all clusters with waist circumference as
hub, paired comparison of the number of common nodes between clusters was performed be-
tween baseline cluster and either LCD, or WL group, or WR group cluster. The p-values of
these tests were all< 0.001, indicating a high similarity between nodes’ composition of the
clusters having waist circumference for hub. Waist circumference is the most prominent
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clinical risk factor involved in MetS [41]. A persistent positive link with the macrophage in-
flammatory protein 1α (CCL3) and negative with the adipokine α2-glycoprotein 1 (AZGP1)
and the enzyme glycerol-3-phosphate dehydrogenase 1-like (GPD1L) mRNA levels was found
at baseline, after active weight loss and at 6 months of the weight control follow-up in WL and
WR groups. Variants in GPD1L are associated with risk of sudden death in patients with coro-
nary artery disease [42]. AZGP1 is a lipid mobilizing factor with putative role in insulin resis-
tance as mRNA and protein were low in AT of type 2 diabetes patients and circulating AZGP1
protein inversely correlated with BMI and waist-to-hip ratio [43]. The chemokine CCL3 is up-
regulated with insulin resistance in AT [44]. These genes are at top rank of the MetS signature
described in AT from obese individuals [24]. The relationship between these transcripts and
the major component of MetS suggests that they could be used as biomarkers for risk stratifica-
tion of type 2 diabetes or cardiovascular disease in obese individuals, alone or combined to bio-
clinical related factors.

At baseline, fasting plasma insulin was the most significant central vertex among all mod-
ules. This cluster exhibited an immune signature, all transcripts of the Adhesion and Diapede-
sis pathway being positively connected to insulin. On the other hand, insulin was negatively
connected to stearic acid and transcripts encoding factors involved in lipid metabolism
(CIDEA) [45], especially lipolysis (GPR109A and ABDH5) [46], and SIRT1. The SIRT1 gene en-
codes a histone deacetylase that regulates various metabolic pathways and regulate lipids and
glucose metabolism [47]. Besides the positive relationship between immune cells content in AT
in the etiology of insulin resistance [48], this cluster indicates that, in obese women, the higher
is the insulin level at fasting, the lower is the lipid metabolism signaling in AT.

After LCD induced weight loss, 3 modules focused on FAs. One was organized around lino-
leic acid, an essential FA that is highly represented (>30%) in the commercial hypocaloric
meals provided during LCD (data not shown). However, linoleic acid (18:2(cis-9, 12)) content
of fat pads was unchanged compared to baseline. Indeed, there is minimal deposition of dietary
fat into AT during periods of negative energy balance [9]. Myristic acid (14:0) was the most
central vertex of a module along with lauric (12:0) and stearic acids (18:0). Adiponectin, which
is an adipocytokine with anti-inflammatory and insulin sensitive properties [49] was another
central vertex. Myristic acid and adiponectin were both positively connected between each
other and to insulin signaling or insulin-like transcripts (IRS1 and IGF1). The biological role of
myristic acid remains poorly explored. Fatty acylation of signaling proteins play key roles in
regulating cellular structure and function. Among the various myristoylated proteins are nu-
merous signal transducing proteins [50]. In the present study, there was a statistically signifi-
cant decrease in myristic acid triglycerides AT content during LCD, indicating a mobilization
from lipid droplet that might provide non esterified myristic acid within the adipose cell.
Whether such available myristic acid indeed does acylate signal transduction proteins is a ques-
tion of particular interest.

Six months after the end of LCD, the AT from women that continued to lose weight (WL
group) also displayed two modules organized around FAs, myristoleic acid and vaccenic acid.
Vaccenic acid amount is low in AT (<2%). It comes from palmitoleic acid elongation. There
was no significant change in AT vaccenic acid content during the dietary intervention. Its
steadiness in AT from individuals continuing to lose weight indicates that this FA was poorly
mobilized during weight loss. A positive correlation between vaccenic plasma TG content and
insulin resistance has been shown in men [51]. Whether there is a similar link with AT triglyc-
erides deserves attention even though no direct relationship with glucose homeostasis parame-
ters appears in the present module.

When considering active weight loss and continued weight loss after calorie restriction, a re-
markable feature was the presence of myristoleic acid connected to an array of genes involved
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in FA synthesis, especially DNL enzymes and desaturases (FASN, SCD, FADS1 and FADS2).
Like palmitoleic (16:1(cis-9)) and oleic acids (18:1(cis-9)), myristoleic acid is a product of desa-
turation by SCD (from myristic acid). It is a minor AT FA (<0.5% of total FA content) that is
not provided by food. Surprisingly, in the present study it is an important focal node, which
AT content decreased during LCD and remained stable at the end of WMD, except in WR
group. Moreover, at the end of WMD, in WR group and in relation to SCD gene expression in
AT, an increased SCD activity (assessed by 14:1(cis-9)/14:0 ratio) was observed that could be
due to a positive regulation of SCD transcription by saturated FAs [52]. In this group, 14:0 and
16:0 were focal nodes and positively connected to SCD. The SCD activity is known to be associ-
ated with triglyceride accumulation [53] but its beneficial effect on insulin sensitivity remains
controversial [52]. Control of SCD expression and DNL are coordinated. SCD is tightly regulat-
ed by saturated FAs and poly-unsaturated FAs as linoleic acid, SREBP-1c and carbohydrate re-
sponse element binding protein (ChREBP) α and β [52]. ChREBP isoforms were not included
in the series of mRNA quantified here but SREBP1 was positively connected to myristoleic acid
after LCD. This is in agreement with the transcriptional activation of SCD by SREBP1c [52]. In
contrast to liver where DNL is considered deleterious, DNL occurring in fat depots may pro-
vide beneficial health effects since it produces lipid species with bioactivities distinct from
those of lipids predominantly derived from diet [2, 54]. Strategies to enhance DNL specifically
in AT may provide new therapies for metabolic and cardiovascular diseases [55–57]. The pres-
ence of a DNL signature with acute (LCD) and continuing (WMD) weight loss is in line with
the enhanced differentiation potential of preadipocytes observed after calorie restriction [58].
In the present study, myristoleic acid might be an interesting marker of DNL and SCD activity
in AT. Its persistence in AT triglycerides despite fat mass loss may constitute a hallmark of
beneficial adipogenesis after weight loss.

Last, AT fromWR group showed a salient hyperplastic attribute with 3 modules encom-
passing genes involved in cell proliferation, angiogenesis, or growth factor signal transduction.
Of note, the former cluster exhibited two mono-unsaturated FAs as central nodes with no link
to genes involved in FA metabolism. The angiogenic signature was mainly due to VEGFA
(mean fold change during WMD = 1.9±0.4) that encodes an essential proangiogenic factor in
AT [59]. The latter was organized around fructosamine, which is a serum marker of poor long-
term glycemic control, as a hallmark of the deleterious effect of energy store repletion. The pos-
itive link of fructosamine to a series of transcripts- TWIST1 that encodes a transcription factor
abundantly expressed in adipocytes [60], which is positively correlated to insulin sensitivity
[61] and SPTAN1, a transcript encoding an insulin responsive α-fodrin involved in the glucose
transporter GLUT4 translocation in adipocytes [62]-related to glucose homeostasis and be-
yond insulin signaling (IRS1, IGF1, FGF2 and GHR) may seem counterintuitive. Growth hor-
mone shares protein anabolic properties with insulin. On the other hand, fasting insulin and
glucose are part of another module which displays an immune signature (Adhesion and Diape-
desis), emphasizing the link between adipose tissue inflammatory status and insulin resistance
[48]. The link between weight regain and proliferative patterns was previously shown using
transcriptomic in a small subset of individuals from the same trial [28]. The present study indi-
cates AT hyperplasia in individuals failing weight maintenance despite continued energy re-
striction. Altogether, no cluster showed a lipid metabolism signature in this group. Stearic acid
was the hub of a module with the immune response signature. This FA was negatively con-
nected to unfavorable bio-clinical parameters (body fat mass, fasting plasma insulin, triglycer-
ides and CRP) and positively to beneficial ones (adiponectin and HDL). This suggests that the
highest is lipid droplet stearic acid content, the better is metabolic status. The cluster with sys-
tolic blood pressure and waist circumference as hubs displayed an amine degradation signa-
ture. Levels of noradrenaline associate with obesity and cardiovascular risk [63]. Systolic blood
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pressure was negatively correlated to most variables, including AZGP1 and GPD1L described
above except diastolic blood pressure. This parameter was negatively correlated to waist cir-
cumference as well as BMI. This feature was different from the one observed in the weight loss
group where waist circumference was positively correlated to weight and BMI. This emphasizes
the predominant role of waist circumference, compared to blood pressure, in metabolic syn-
drome compared to blood pressure.

The present investigation shows several limitations. Only women were investigated; as a
preeminent effect of sex on AT gene expression was previously shown [24, 64]. Also, we stud-
ied fat from the subcutaneous abdominal region and we cannot extrapolate our findings to
other subcutaneous, gluteo-femoral or visceral fat depots. Last, we performed unsupervised
learning using GGM. This approach uses partial correlations and differs from relevance net-
works that use direct correlations and thus provide a strong but sometimes biased measure of
the dependence between variables. Bayesian networks that lead to directed acyclic graphs
(DAG) could provide a clue on causal relationships but some knowledge information has to be
provided a priori. In the present networks, edges do not represent simple correlations but be-
tween variables dependencies. Using GGM, interpretation is not causality but only a matter of
strong and direct statistical association. Nodes with highest betweenness centrality represent
variables whose fine tuning might greatly impact the level of the other connected variables.

To conclude, this approach has linked a characteristic structure of AT network to a slimmed
phenotype thereby suggesting myristoleic acid as main lipidic biomarker for DNL and SCD ac-
tivity. The anabolic signature unique to individuals with unsuccessful weight control suggests
detrimental tissue hyperplasia. This initial analysis provides a valuable starting point for more
in-depth investigation of the implication of myristoleic acid in weight loss.
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represent weight stable group and circles/dotted lines represent weight regain group. Variables
are shown as means ± SEM. Δ: p< 0.05, data different in weight loss group, #: p< 0.05, data
different in weight stable group, ●: p< 0.05, data different in weight regain group.
(TIF)

S2 Fig. Profiles of the most varying adipose tissue mRNAs according to weight control
groups during dietary intervention. Adipose tissue mRNA levels of SCD (A) and FASN (B)
were determined according to groups at baseline (BAS), after 8 weeks low calorie diet (LCD),
and after 6 months of weight maintenance diet (WMD). Triangles/black lines represent weight
loss group; squares/grey lines represent weight stable group and circles/dotted lines represent
weight regain group. Variables are shown as means ± SEM. Δ: p< 0.05, data different in weight
loss group.; #: p< 0.05, data different in weight stable group.; ●: p< 0.05, data different in
weight regain group.; §: p< 0.05, data difference between groups.
(TIF)

S3 Fig. Stearoyl coA desaturase activities according to weight control groups during dietary
intervention. Stearoyl coA desaturase (SCD) activities were assessed using C14:1 n-5/C14:0,
C16:1 n-7/C16:0 and C18:1 n-9/C18:0 ratios and plotted according to groups at baseline
(BAS), after 8 weeks low calorie diet (LCD), and after 6 months of weight maintenance diet
(WMD). Triangles/black lines represent weight loss group; squares/grey lines represent weight
stable group and circles/dotted lines represent weight regain group. Variables are shown as
means ± SEM. Δ: p< 0.05, data different in weight loss group; #: p< 0.05, data different in
weight stable group; •: p< 0.05, data different in weight regain group; §: p< 0.05, data differ-
ence between groups.
(TIF)
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