H. Babbe, A. Roers, A. Waisman, H. Lassmann, N. Goebels et al., Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction, J. Exp. Med, vol.192, pp.393-404, 2000.

J. Booss, M. M. Esiri, W. W. Tourtellotte, and D. Y. Mason, Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis, J. Neurol. Sci, vol.62, pp.219-232, 1983.

M. Salou, A. Garcia, L. Michel, A. Gainche-salmon, D. Loussouarn et al., Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis, Ann. Clin. Transl. Neurol, vol.2, pp.609-622, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01200787

A. Junker, J. Ivanidze, J. Malotka, I. Eiglmeier, H. Lassmann et al., Multiple sclerosis: T-cell receptor expression in distinct brain regions, Brain J. Neurol, vol.130, pp.2789-2799, 2007.
DOI : 10.1093/brain/awm214

URL : https://academic.oup.com/brain/article-pdf/130/11/2789/940443/awm214.pdf

M. Montes, X. Zhang, L. Berthelot, D. Laplaud, S. Brouard et al., Oligoclonal myelin-reactive T-cell infiltrates derived from multiple sclerosis lesions are enriched in Th17 cells, Clin. Immunol, vol.130, pp.133-144, 2009.
DOI : 10.1016/j.clim.2008.08.030

S. Jilek, M. Schluep, A. O. Rossetti, L. Guignard, G. L. Goff et al., CSF enrichment of highly differentiated CD8+ T cells in early multiple sclerosis, vol.123, pp.105-113, 2007.

J. S. Tzartos, M. A. Friese, M. J. Craner, J. Palace, J. Newcombe et al., Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis, Am. J. Pathol, vol.172, pp.146-155, 2008.

L. Maggi, V. Santarlasci, M. Capone, A. Peired, F. Frosali et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC, Eur. J. Immunol, vol.40, pp.2174-2181, 2010.

E. Martin, E. Treiner, L. Duban, L. Guerri, H. Laude et al., Stepwise development of MAIT cells in mouse and human, PLoS Biol, vol.7, p.54, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00707793

L. J. Walker, Y. Kang, M. O. Smith, H. Tharmalingham, N. Ramamurthy et al., Human MAIT and CD8 cells develop from a pool of type-17 precommitted CD8+ T cells, Blood, vol.119, pp.422-433, 2012.

M. Dusseaux, E. Martin, N. Serriari, I. Péguillet, V. Premel et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells, Blood, vol.117, pp.1250-1259, 2011.
DOI : 10.1182/blood-2010-08-303339

URL : http://www.bloodjournal.org/content/bloodjournal/117/4/1250.full.pdf

O. Patel, L. Kjer-nielsen, J. L. Nours, S. B. Eckle, R. Birkinshaw et al., Recognition of vitamin B metabolites by mucosal-associated invariant T cells, Nat. Commun, vol.4, p.2142, 2013.
DOI : 10.1038/ncomms3142

URL : https://www.nature.com/articles/ncomms3142.pdf

R. Reantragoon, A. J. Corbett, I. G. Sakala, N. A. Gherardin, J. B. Furness et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells, J. Exp. Med, vol.210, pp.2305-2320, 2013.
DOI : 10.1084/jem.20130958

URL : http://jem.rupress.org/content/210/11/2305.full.pdf

E. Treiner, L. Duban, S. Bahram, M. Radosavljevic, V. Wanner et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1, Nature, vol.422, pp.164-169, 2003.
DOI : 10.1038/nature01433

A. J. Corbett, S. B. Eckle, R. W. Birkinshaw, L. Liu, O. Patel et al., T-cell activation by transitory neo-antigens derived from distinct microbial pathways, Nature, vol.509, pp.361-365, 2014.
DOI : 10.1038/nature13160

L. Kjer-nielsen, O. Patel, A. J. Corbett, J. L. Nours, B. Meehan et al., MR1 presents microbial vitamin B metabolites to MAIT cells, Nature, 2012.
DOI : 10.1038/nature11605

L. L. Bourhis, E. Martin, I. Péguillet, A. Guihot, N. Froux et al., Antimicrobial activity of mucosalassociated invariant T cells, Nat. Immunol, vol.11, pp.701-708, 2010.

W. Chua, S. M. Truscott, C. S. Eickhoff, A. Blazevic, D. F. Hoft et al., Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection, Infect. Immun, vol.80, pp.3256-3267, 2012.
DOI : 10.1128/iai.00279-12

URL : https://iai.asm.org/content/80/9/3256.full.pdf

M. C. Gold, S. Cerri, S. Smyk-pearson, M. E. Cansler, T. M. Vogt et al., Human mucosal associated invariant T cells detect bacterially infected cells, PLoS Biol, vol.8, p.1000407, 2010.
DOI : 10.1371/journal.pbio.1000407

URL : https://hal.archives-ouvertes.fr/inserm-00707307

A. Meierovics, W. C. Yankelevich, and S. C. Cowley, MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection, Proc. Natl. Acad. Sci. U. S. A, 2013.
DOI : 10.1073/pnas.1302799110

URL : http://www.pnas.org/content/110/33/E3119.full.pdf

R. Salerno-goncalves, T. Rezwan, and M. B. Sztein, B cells modulate mucosal associated invariant T cell immune responses, Front. Immunol, vol.4, 2014.
DOI : 10.3389/fimmu.2013.00511

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2013.00511/pdf

M. Lepore, A. Kalinicenko, A. Colone, B. Paleja, A. Singhal et al., Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCR? repertoire, Nat. Commun, vol.5, 2014.
DOI : 10.1038/ncomms4866

URL : https://www.nature.com/articles/ncomms4866.pdf

L. L. Bourhis, M. Dusseaux, A. Bohineust, S. Bessoles, E. Martin et al., MAIT cells detect and efficiently lyse bacterially-infected epithelial cells, PLoS Pathog, vol.9, p.1003681, 2013.

A. Kurioka, J. E. Ussher, C. Cosgrove, C. Clough, J. R. Fergusson et al., MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets, Mucosal Immunol, vol.8, pp.429-440, 2015.

S. V. Abrahamsson, D. F. Angelini, A. N. Dubinsky, E. Morel, U. Oh et al., Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis, Brain J. Neurol, vol.136, pp.2888-2903, 2013.

Z. Illés, M. Shimamura, J. Newcombe, N. Oka, and T. Yamamura, Accumulation of Valpha7.2-Jalpha33 invariant T cells in human autoimmune inflammatory lesions in the nervous system, Int. Immunol, vol.16, pp.223-230, 2004.

A. Willing, O. A. Leach, F. Ufer, K. E. Attfield, K. Steinbach et al., , p.8

, + MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis, Eur. J. Immunol, vol.44, pp.3119-3128, 2014.

V. Annibali, G. Ristori, D. F. Angelini, B. Serafini, R. Mechelli et al., CD161(high)CD8+ T cells bear pathogenetic potential in multiple sclerosis, Brain J. Neurol, vol.134, pp.542-554, 2011.

Y. Miyazaki, S. Miyake, A. Chiba, O. Lantz, and T. Yamamura, Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis, Int. Immunol, vol.23, pp.529-535, 2011.

W. I. Mcdonald, A. Compston, G. Edan, D. Goodkin, H. P. Hartung et al., Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the Diagnosis of Multiple Sclerosis, Ann. Neurol, vol.50, pp.121-127, 2001.

C. H. Polman, S. C. Reingold, G. Edan, M. Filippi, H. Hartung et al., Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald criteria, Ann. Neurol, vol.58, pp.840-846, 2005.

B. B. Weksler, Blood-brain barrier-specific properties of a human adult brain endothelial cell line, FASEB J, 2005.

A. Prat, K. Biernacki, J. Lavoie, J. Poirier, P. Duquette et al., Migration of multiple sclerosis lymphocytes through brain endothelium, Arch. Neurol, vol.59, p.391, 2002.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) method, Methods San Diego Calif, vol.25, pp.402-408, 2001.

L. Berthelot, D. Laplaud, S. Pettré, C. Ballet, L. Michel et al., Blood CD8+ T cell responses against myelin determinants in multiple sclerosis and healthy individuals, Eur. J. Immunol, vol.38, pp.1889-1899, 2008.

O. Lee, Y. Cho, S. Kee, and M. Kim,

Y. Lee and . Kwon, Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults, Exp. Gerontol, vol.49, pp.47-54, 2014.

J. Novak, J. Dobrovolny, L. Novakova, and T. Kozak, The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in males and females of reproductive age, Scand. J. Immunol, 2014.

P. K. Chattopadhyay, M. R. Betts, D. A. Price, E. Gostick, H. Horton et al., The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression, J. Leukoc. Biol, vol.85, pp.88-97, 2009.

L. Chen and D. B. Flies, Molecular mechanisms of T cell co-stimulation and co-inhibition, Nat. Rev. Immunol, vol.13, pp.227-242, 2013.

P. L. Jager, C. Baecher-allan, L. M. Maier, A. T. Arthur, L. Ottoboni et al., The role of the CD58 locus in multiple sclerosis, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5264-5269, 2009.

B. Engelhardt and R. M. Ransohoff, Capture, crawl, cross: the T cell code to breach the blood-brain barriers, Trends Immunol, vol.33, pp.579-589, 2012.

N. Serriari, M. Eoche, L. Lamotte, M. Fumery, P. Marcelo et al., Innate Mucosal-associated Invariant T (MAIT) cells are activated in inflammatory bowel diseases, Clin. Exp. Immunol, 2014.

S. H. Havenith, S. L. Yong, S. M. Henson, B. Piet, M. M. Idu et al., Analysis of stem-cell-like properties of human CD161++IL-18R?+ memory CD8+ T cells, Int. Immunol, vol.24, pp.625-636, 2012.

C. J. Turtle, J. Delrow, R. C. Joslyn, H. M. Swanson, R. Basom et al., Innate signals overcome acquired TCR signaling pathway regulation and govern the fate of human CD161(hi) CD8? + semiinvariant T cells, Blood, vol.118, pp.2752-2762, 2011.

J. Losy and A. Niezgoda, IL-18 in patients with multiple sclerosis, Acta Neurol. Scand, vol.104, pp.171-173, 2001.

F. Nicoletti, R. D. Marco, K. Mangano, F. Patti, E. Reggio et al., Increased serum levels of interleukin-18 in patients with multiple sclerosis, Neurology, vol.57, pp.342-344, 2001.

K. E. Balashov, J. B. Rottman, H. L. Weiner, and W. W. Hancock, CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.6873-6878, 1999.

A. Windhagen, J. Newcombe, F. Dangond, C. Strand, M. N. Woodroofe et al., Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions, J. Exp. Med, vol.182, pp.1985-1996, 1995.

L. Battistini, L. Piccio, B. Rossi, S. Bach, S. Galgani et al., CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1, Blood, vol.101, pp.4775-4782, 2003.

R. Bill, A. Döring, U. Deutsch, and B. Engelhardt, PSGL-1 is dispensible for the development of active experimental autoimmune encephalomyelitis in SJL/J mice, J. Neuroimmunol, vol.232, pp.207-208, 2011.

B. Engelhardt, B. Kempe, S. Merfeld-clauss, M. Laschinger, B. Furie et al., P-selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice, J. Immunol, vol.175, pp.1267-1275, 2005.

I. Osmers, D. C. Bullard, and S. R. Barnum, PSGL-1 is not required for development of experimental autoimmune encephalomyelitis, J. Neuroimmunol, vol.166, pp.193-196, 2005.
DOI : 10.1016/j.jneuroim.2005.06.001

L. Piccio, B. Rossi, E. Scarpini, C. Laudanna, C. Giagulli et al., Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors, J. Immunol, vol.168, pp.1940-1949, 2002.

I. Ifergan, H. Kebir, J. I. Alvarez, G. Marceau, M. Bernard et al., Central nervous system recruitment of effector memory CD8 + T lymphocytes during neuroinflammation is dependent on ?4 integrin, Brain J. Neurol, vol.134, pp.3560-3577, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00723279

H. H. Wang, Y. Q. Dai, W. Qiu, Z. Q. Lu, F. H. Peng et al., Interleukin-17-secreting T cells in neuromyelitis optica and multiple sclerosis during relapse, J. Clin. Neurosci. Off. J. Neurosurg. Soc. Aust, vol.18, pp.1313-1317, 2011.
DOI : 10.1016/j.jocn.2011.01.031

M. B. Teunissen, N. G. Yeremenko, D. L. Baeten, S. Chielie, P. I. Spuls et al., The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells, J. Invest. Dermatol, vol.134, pp.2898-2907, 2014.