P. Blancou, V. Tardif, T. Simon, R. S. Carreno, L. Kalergis et al., Immunoregulatory properties of heme oxygenase-1, Methods Mol Biol, vol.677, pp.247-68, 2011.
DOI : 10.1007/978-1-60761-869-0_18

R. Motterlini, B. Haas, and R. Foresti, Emerging concepts on the anti-inflammatory actions of carbon monoxide-releasing molecules (CO-RMs), Med Gas Res, vol.2, p.28, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00769904

L. E. Otterbein, F. H. Bach, and J. Alam, Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway, Nat Med, vol.6, pp.422-430, 2000.
DOI : 10.1038/74680

S. Remy, P. Blancou, and L. Tesson, Carbon monoxide inhibits TLR-induced dendritic cell immunogenicity, J Immunol, vol.182, pp.1877-84, 2009.

R. M. Steinman and Z. A. Cohn, Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution, J Exp Med, vol.137, pp.1142-62, 1973.

J. Vega-ramos and J. A. Villadangos, Consequences of direct and indirect activation of dendritic cells on antigen presentation: functional implications and clinical considerations, Mol Immunol, vol.55, pp.175-183, 2013.

C. Bonini, S. P. Lee, S. R. Riddell, and P. D. Greenberg, Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4 + and CD8

. +-t-cells, J Immunol, 2001.

S. Burgdorf, A. Kautz, V. Bohnert, P. A. Knolle, and C. Kurts, Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation, Science, vol.316, pp.612-618, 2007.

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of dendritic cells, Annu Rev Immunol, vol.18, pp.767-811, 2000.

K. Inaba, S. Turley, and T. Iyoda, The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli, J Exp Med, vol.191, pp.927-963, 2000.

E. S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, and I. Mellman, Activation of lysosomal function during dendritic cell maturation, Science, vol.299, pp.1400-1403, 2003.
DOI : 10.1126/science.1080106

P. Radwan, K. Radwan-kwiatek, J. Tabarkiewicz, S. Radej, and J. Rolinski, Enhanced phenotypic and functional maturation of monocyte-derived dendritic cells from patients with active Crohn's disease and ulcerative colitis, J Physiol Pharmacol, vol.61, pp.695-703, 2010.

B. Beutler, K. Hoebe, X. Du, and R. J. Ulevitch, How we detect microbes and respond to them: the Toll-like receptors and their transducers, J Leukoc Biol, vol.74, pp.479-85, 2003.
DOI : 10.1189/jlb.0203082

URL : https://jlb.onlinelibrary.wiley.com/doi/pdf/10.1189/jlb.0203082

S. Siegemund, N. Schutze, M. A. Freudenberg, M. B. Lutz, R. K. Straubinger et al., Production of IL-12, IL-23 and IL-27p28 by bone marrow-derived conventional dendritic cells rather than macrophages after LPS/TLR4-dependent induction by Salmonella enteritidis, Immunobiology, vol.212, pp.739-50, 2007.

J. Zhong, P. Yang, K. Muta, R. Dong, M. Marrero et al., Loss of Jak2 selectively suppresses DC-mediated innate immune response and protects mice from lethal dose of LPS-induced septic shock, PLoS One, vol.5, p.9593, 2010.

J. Geisel, F. Kahl, M. Muller, H. Wagner, C. J. Kirschning et al., IL-6 and maturation govern TLR2 and TLR4 induced TLR agonist tolerance and cross-tolerance in dendritic cells, J Immunol, vol.179, pp.5811-5819, 2007.
DOI : 10.4049/jimmunol.179.9.5811

URL : http://www.jimmunol.org/content/179/9/5811.full.pdf

K. V. Anderson, Toll signaling pathways in the innate immune response, Curr Opin Immunol, vol.12, pp.13-22, 2000.

F. Nomura, S. Akashi, and Y. Sakao, Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression, J Immunol, vol.164, pp.3476-3485, 2000.

K. Hoshino, O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa et al., Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product, J Immunol, vol.162, pp.3749-52, 1999.

T. Kaisho and S. Akira, Dendritic-cell function in Toll-like receptor-and MyD88-knockout mice, Trends Immunol, vol.22, pp.78-83, 2001.

B. Daubeuf, J. Mathison, and S. Spiller, TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock, J Immunol, vol.179, pp.6107-6121, 2007.

M. Kobayashi, S. Saitoh, and N. Tanimura, Regulatory roles for MD-2 and TLR4 in ligand-induced receptor clustering, J Immunol, vol.176, pp.6211-6219, 2006.

A. Poltorak, X. He, and I. Smirnova, Defective LPS signaling in C3H/HeJ and C57BL/ 10ScCr mice: mutations in Tlr4 gene, Science, vol.282, pp.2085-2093, 1998.

C. Chauveau, S. Remy, and P. J. Royer, Heme oxygenase-1 expression inhibits dendritic cell maturation and proinflammatory function but conserves IL-10 expression, Blood, vol.106, pp.1694-702, 2005.

D. Morse, S. E. Pischke, and Z. Zhou, Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1, J Biol Chem, vol.278, pp.36993-37001, 2003.

, Immunology, vol.144, pp.321-332

K. A. Brown, S. D. Brain, J. D. Pearson, J. D. Edgeworth, S. M. Lewis et al., Neutrophils in development of multiple organ failure in sepsis, Lancet, vol.368, pp.157-69, 2006.

P. Efron and L. L. Moldawer, Sepsis and the dendritic cell, Shock, vol.20, pp.386-401, 2003.

M. Y. Zhou, S. K. Lo, M. Bergenfeldt, C. Tiruppathi, A. Jaffe et al., In vivo expression of neutrophil inhibitory factor via gene transfer prevents lipopolysaccharideinduced lung neutrophil infiltration and injury by a b2 integrin-dependent mechanism, J Clin Invest, vol.101, pp.2427-2464, 1998.

B. Lundeland, H. Osterholt, Y. Gundersen, P. K. Opstad, I. Thrane et al., Moderate temperature alterations affect Gram-negative immune signalling in ex vivo whole blood, Scand J Clin Lab Invest, vol.72, pp.246-52, 2012.

I. Jawad, I. Luksic, and S. B. Rafnsson, Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality, J Glob Health, vol.2, p.10404, 2012.

P. E. Marik and G. P. Zaloga, Hypothermia and cytokines in septic shock. Norasept II Study Investigators. North American study of the safety and efficacy of murine monoclonal antibody to tumor necrosis factor for the treatment of septic shock, Intensive Care Med, vol.26, pp.716-737, 2000.

A. A. Steiner, A. Y. Molchanova, and M. D. Dogan, The hypothermic response to bacterial lipopolysaccharide critically depends on brain CB1, but not CB2 or TRPV1, receptors, J Physiol, vol.589, pp.2415-2446, 2011.

T. Laumonier, S. Yang, S. Konig, C. Chauveau, I. Anegon et al., Lentivirus mediated HO-1 gene transfer enhances myogenic precursor cell survival after autologous transplantation in pig, Mol Ther, vol.16, pp.404-414, 2008.

A. E. Morelli, A. F. Zahorchak, A. T. Larregina, B. L. Colvin, A. J. Logar et al., Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation, Blood, vol.98, pp.1512-1535, 2001.

A. A. Romanovsky, O. Shido, S. Sakurada, N. Sugimoto, and T. Nagasaka, Endotoxin shock: thermoregulatory mechanisms, Am J Physiol, vol.270, pp.693-703, 1996.

S. Schinkel, C. Schinkel, V. Pollard, R. Garofallo, H. Heberle et al., Effects of endotoxin on serum chemokines in man, Eur J Med Res, vol.10, pp.76-80, 2005.

S. Akashi, S. Saitoh, and Y. Wakabayashi, Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14, J Exp Med, vol.198, pp.1035-1077, 2003.

F. Rocuts, Y. Ma, X. Zhang, W. Gao, Y. Yue et al., Carbon monoxide suppresses membrane expression of TLR4 via myeloid differentiation factor-2 in bTC3 cells, J Immunol, vol.185, pp.2134-2143, 2010.

B. Wegiel, D. Gallo, E. Csizmadia, T. Roger, E. Kaczmarek et al., Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase, Proc Natl Acad Sci, vol.108, pp.18849-54, 2011.

L. Xue, G. Farrugia, S. M. Miller, C. D. Ferris, S. H. Snyder et al., Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes, Proc Natl Acad Sci, vol.97, pp.1851-1856, 2000.

R. Motterlini, J. E. Clark, R. Foresti, P. Sarathchandra, B. E. Mann et al., Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities, Circ Res, vol.90, pp.17-24, 2002.

V. S. Sharma and D. Magde, Activation of soluble guanylate cyclase by carbon monoxide and nitric oxide: a mechanistic model, Methods, vol.19, pp.494-505, 1999.

I. F. Tsai, C. Y. Lin, C. T. Huang, Y. C. Lin, C. M. Yang et al., Modulation of human monocyte-derived dendritic cells maturation by a soluble guanylate cyclase activator, YC-1, in a cyclic nucleotide independent manner, Int Immunopharmacol, vol.7, pp.1299-310, 2007.

K. Nakahira, H. P. Kim, and X. H. Geng, Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts, J Exp Med, vol.203, pp.2377-89, 2006.

X. M. Wang, H. P. Kim, K. Nakahira, S. W. Ryter, and A. M. Choi, The heme oxygenase-1/carbon monoxide pathway suppresses TLR4 signaling by regulating the interaction of TLR4 with caveolin-1, J Immunol, vol.182, pp.3809-3827, 2009.

R. S. Munford, Severe sepsis and septic shock: the role of gram-negative bacteremia, Annu Rev Pathol, vol.1, pp.467-96, 2006.

Y. Kobayashi, A. Iwata, and K. Suzuki, B and T lymphocyte attenuator inhibits LPSinduced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells, Proc Natl Acad Sci, vol.110, pp.5121-5127, 2013.

D. C. Angus, W. T. Linde-zwirble, J. Lidicker, G. Clermont, J. Carcillo et al., Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care, Crit Care Med, vol.29, pp.1303-1313, 2001.

J. L. Vincent, Y. Sakr, and C. L. Sprung, Sepsis in European intensive care units: results of the SOAP study, Crit Care Med, vol.34, pp.344-53, 2006.

A. L. Dougnac, M. F. Mercado, R. R. Cornejo, M. V. Cariaga, G. P. Hernandez et al., Prevalence of severe sepsis in intensive care units. A national multicentric study, Rev Med Chil, vol.135, pp.620-650, 2007.

R. Carrillo-esper, J. R. Carrillo-cordova, and L. D. Carrillo-cordova, Epidemiological study of sepsis in Mexican intensive care units, Cir Cir, vol.77, pp.301-309, 2009.

V. Tardif, S. A. Riquelme, and R. S. , Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells, Eur J Immunol, vol.43, pp.2832-2876, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02166083

M. Weiss, M. Elsharkawi, K. Welt, and E. M. Schneider, Transient leukocytosis, granulocyte colony-stimulating factor plasma concentrations, and apoptosis determined by binding of annexin V by peripheral leukocytes in patients with severe sepsis, Ann N Y Acad Sci, vol.1010, pp.742-749, 2003.

W. L. Biffl, E. E. Moore, G. Zallen, J. L. Johnson, J. Gabriel et al., Neutrophils are primed for cytotoxicity and resist apoptosis in injured patients at risk for multiple organ failure, Surgery, vol.126, pp.198-202, 1999.

C. Wagner, M. Pioch, C. Meyer, C. Iking-konert, K. Andrassy et al., Differentiation of polymorphonuclear neutrophils in patients with systemic infections and chronic inflammatory diseases: evidence of prolonged life span and de novo synthesis of fibronectin, J Mol Med (Berl), vol.78, pp.337-382, 2000.