D. M. Briscoe, M. S. Kim, and C. Lillehei, Outcome of renal transplantation in children less than two years of age, Kidney Int, vol.42, pp.657-662, 1992.

V. R. Dharnidharka, P. Fiorina, and W. E. Harmon, Kidney transplantation in children, N Engl J Med, vol.371, pp.549-558, 2014.

, United Network for Organ Sharing National Data, UNOS, 2011.

J. M. Smith, K. Martz, and T. D. Blydt-hansen, Pediatric kidney transplant practice patterns and outcome benchmarks, a report of the North American Pediatric Renal Trials and Collaborative Studies, vol.17, pp.149-157, 1987.

L. Li, K. Khush, and S. C. Hsieh, Identification of common blood gene signatures for the diagnosis of renal and cardiac acute allograft rejection, PLoS One, vol.8, 2013.

P. F. Halloran, A. B. Pereira, and J. Chang, Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM), Am J Transplant, vol.13, pp.2865-2874, 2013.

J. A. Jackson, E. J. Kim, and B. Begley, Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection, Am J Transplant, vol.11, pp.2228-2234, 2011.

K. P. Daly, M. E. Seifert, and A. Chandraker, VEGF-C, VEGF-A and related angiogenesis factors as biomarkers of allograft vasculopathy in cardiac transplant recipients, J Heart Lung Transplant, vol.32, pp.120-128, 2013.

M. E. Reinders, M. Sho, and A. Izawa, Proinflammatory functions of vascular endothelial growth factor in alloimmunity, J Clin Invest, vol.112, pp.1655-1665, 2003.

M. Haas, B. Sis, and L. C. Racusen, Banff 2013 meeting report: inclusion of c4d-negative antibodymediated rejection and antibody-associated arterial lesions, Am J Transplant, vol.14, pp.272-283, 2014.

M. Mengel, B. Sis, and M. Haas, Meeting report: new concepts in antibody-mediated rejection, Am J Transplant, vol.12, pp.563-570, 2011.

K. Solez, R. B. Colvin, and L. C. Racusen, Banff 07 classification of renal allograft pathology: updates and future directions, Am J Transplant, vol.8, pp.753-760, 2008.

K. Solez, R. B. Colvin, and L. C. Racusen, 05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN'), Am J Transplant, vol.7, pp.518-526, 2007.

R. S. Al-lamki, J. R. Bradley, and J. S. Pober, Endothelial cells in allograft rejection, Transplantation, vol.86, pp.1340-1348, 2008.

J. S. Pober, J. , D. Qin, and L. , Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy, Arterioscler Thromb Vasc Biol, vol.34, pp.1609-1614, 2014.

T. J. Rabelink, D. C. Wijewickrama, and E. J. De-koning, Peritubular endothelium: the Achilles heel of the kidney?, Kidney Int, vol.72, pp.926-930, 2007.

F. M. Steegh, M. A. Gelens, and F. H. Nieman, Early loss of peritubular capillaries after kidney transplantation, J Am Soc Nephrol, vol.22, pp.1024-1029, 2011.

B. Sis, G. S. Jhangri, and S. Bunnag, Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining, Am J Transplant, vol.9, pp.2312-2323, 2009.

D. M. Briscoe, A. C. Yeung, and F. J. Schoen, Predictive value of inducible endothelial cell adhesion molecule expression for acute rejection of human cardiac allografts, Transplantation, vol.59, pp.204-211, 1995.

M. Melter, A. Exeni, and M. E. Reinders, Expression of the chemokine receptor CXCR3 and its ligand IP-10 during human cardiac allograft rejection, Circulation, vol.104, pp.2558-2564, 2001.

X. Zhang, E. Rozengurt, and E. F. Reed, HLA class I molecules partner with integrin beta4 to stimulate endothelial cell proliferation and migration, Sci Signal, vol.3, p.85, 2010.

S. Bruneau, C. B. Woda, and K. P. Daly, Key Features of the Intragraft Microenvironment that Determine Long-Term Survival Following Transplantation, Front Immunol, vol.3, p.54, 2012.

J. R. Lee, T. Muthukumar, and D. Dadhania, Urinary cell mRNA profiles predictive of human kidney allograft status, Immunol Rev, vol.258, pp.218-240, 2014.

S. J. Leibovich, P. J. Polverini, and H. M. Shepard, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha, Nature, vol.329, pp.630-632, 1987.

M. R. Freeman, F. X. Schneck, and M. L. Gagnon, Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: a potential role for T cells in angiogenesis, Cancer Res, vol.55, pp.4140-4145, 1995.

M. Melter, M. E. Reinders, and M. Sho, Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo, Blood, vol.96, pp.3801-3808, 2000.

M. E. Reinders, J. C. Fang, and W. Wong, Expression patterns of vascular endothelial growth factor in human cardiac allografts: association with rejection, Transplantation, vol.76, pp.224-230, 2003.

R. Auerbach and Y. A. Sidky, Nature of the stimulus leading to lymphocyte-induced angiogenesis, J Immunol, vol.123, pp.751-754, 1979.

R. Cotran, R. Cotran, V. Kumar, and S. L. Jr;-robbins, Jr, editors. Pathologic Basis of Disease. W. B. Saunders; Philadelphia: 1994, pp.51-92

J. S. Pober and W. C. Sessa, Evolving functions of endothelial cells in inflammation, Nat Rev Immunol, vol.7, pp.803-815, 2007.

M. E. Reinders, T. J. Rabelink, and D. M. Briscoe, Angiogenesis and endothelial cell repair in renal disease and allograft rejection, J Am Soc Nephrol, vol.17, pp.932-942, 2006.

A. G. Contreras and D. M. Briscoe, Every allograft needs a silver lining, J Clin Invest, vol.117, pp.3645-3648, 2007.

A. N. Babu, T. Murakawa, and J. M. Thurman, Microvascular destruction identifies murine allografts that cannot be rescued from airway fibrosis, J Clin Invest, vol.117, pp.3774-3785, 2007.

K. S. Moulton, R. J. Melder, and V. R. Dharnidharka, Angiogenesis in the huPBL-SCID model of human transplant rejection, Transplantation, vol.67, pp.1626-1631, 1999.

D. Fukumura and R. K. Jain, Tumor microvasculature and microenvironment: targets for antiangiogenesis and normalization, Microvasc Res, vol.74, pp.72-84, 2007.

S. Goel, D. G. Duda, and L. Xu, Normalization of the vasculature for treatment of cancer and other diseases, Physiol Rev, vol.91, pp.1071-1121, 2011.

X. Jiang, M. A. Khan, and W. Tian, Adenovirus-mediated HIF-1alpha gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection, J Clin Invest, vol.121, pp.2336-2349, 2011.

M. Miura, T. El-sawy, and R. L. Fairchild, Neutrophils mediate parenchymal tissue necrosis and accelerate the rejection of complete major histocompatibility complex-disparate cardiac allografts in the absence of interferon-gamma, Am J Pathol, vol.162, pp.509-519, 2003.

J. W. Kupiec-weglinski and R. W. Busuttil, Ischemia and reperfusion injury in liver transplantation, Transplant Proc, vol.37, pp.1653-1656, 2005.

T. El-sawy, J. A. Belperio, and R. M. Strieter, Inhibition of polymorphonuclear leukocyte-mediated graft damage synergizes with short-term costimulatory blockade to prevent cardiac allograft rejection, Circulation, vol.112, pp.320-331, 2005.

V. Brinkmann, U. Reichard, and C. Goosmann, Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1535, 2004.

T. A. Fuchs, A. Brill, and D. Duerschmied, Extracellular DNA traps promote thrombosis, Proc Natl Acad Sci U S A, vol.107, pp.15880-15885, 2010.

K. Kessenbrock, M. Krumbholz, and U. Schonermarck, Netting neutrophils in autoimmune smallvessel vasculitis, Nat Med, vol.15, pp.623-625, 2009.

G. M. Thomas, C. Carbo, and B. R. Curtis, Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice, Blood, vol.119, pp.6335-6343, 2012.

Y. Arai, K. Yamashita, and K. Mizugishi, Serum neutrophil extracellular trap levels predict thrombotic microangiopathy after allogeneic stem cell transplantation, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, vol.19, pp.1683-1689, 2013.

E. Villanueva, S. Yalavarthi, and C. C. Berthier, Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus, J Immunol, vol.187, pp.538-552, 2011.

D. M. Sayah, B. Mallavia, and F. Liu, Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. American journal of respiratory and critical care medicine, vol.191, pp.455-463, 2015.

E. M. Zeisberg, O. Tarnavski, and M. Zeisberg, Endothelial-to-mesenchymal transition contributes to cardiac fibrosis, Nat Med, vol.13, pp.952-961, 2007.

M. Maleszewska, J. R. Moonen, and N. Huijkman, IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner, Immunobiology, vol.218, pp.443-454, 2013.

R. C. Sainson, D. A. Johnston, and H. C. Chu, TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype, Blood, vol.111, pp.4997-5007, 2008.

T. L. Phung, K. Ziv, and D. Dabydeen, Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin, Cancer Cell, vol.10, pp.159-170, 2006.

O. Dormond, A. G. Contreras, and E. Meijer, CD40-induced signaling in human endothelial cells results in mTORC2-and Akt-dependent expression of vascular endothelial growth factor in vitro and in vivo, J Immunol, vol.181, pp.8088-8095, 2008.

K. Murao, T. Ohyama, and H. Imachi, TNF-alpha stimulation of MCP-1 expression is mediated by the Akt/PKB signal transduction pathway in vascular endothelial cells, Biochem Biophys Res Commun, vol.276, pp.791-796, 2000.

G. Boulday, Z. Haskova, and M. E. Reinders, Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa in vitro and in vivo, J Immunol, vol.176, pp.3098-3107, 2006.

C. Wang, L. Qin, and T. D. Manes, Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2, J Exp Med, vol.211, pp.395-404, 2014.

O. Dormond, M. Dufour, and T. Seto, Targeting the intragraft microenvironment and the development of chronic allograft rejection, Hum Immunol, vol.73, pp.1261-1268, 2012.

J. Wedel, S. Bruneau, and N. Kochupurakkal, Chronic allograft rejection: a fresh look, Curr Opin Organ Transplant, vol.20, pp.13-20, 2015.

S. Bruneau, H. Nakayama, and C. B. Woda, DEPTOR regulates vascular endothelial cell activation and proinflammatory and angiogenic responses, Blood, vol.122, pp.1833-1842, 2013.

P. T. Jindra, Y. P. Jin, and R. Jacamo, MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway, Biochem Biophys Res Commun, vol.369, pp.781-787, 2008.

P. T. Jindra, Y. P. Jin, and E. Rozengurt, HLA class I antibody-mediated endothelial cell proliferation via the mTOR pathway, J Immunol, vol.180, pp.2357-2366, 2008.

C. Wang, T. Yi, and L. Qin, Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells, J Clin Invest, vol.123, pp.1677-1693, 2013.

M. Laplante and D. M. Sabatini, mTOR signaling at a glance, J Cell Sci, vol.122, pp.3589-3594, 2009.

S. A. Kang, M. E. Pacold, and C. L. Cervantes, mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin, Science, vol.341, p.1236566, 2013.

D. H. Kim, D. D. Sarbassov, and S. M. Ali, mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery, Cell, vol.110, pp.163-175, 2002.

D. H. Kim, D. D. Sarbassov, and S. M. Ali, GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR, Mol Cell, vol.11, pp.895-904, 2003.

Y. Sancak, C. C. Thoreen, and T. R. Peterson, PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase, Mol Cell, vol.25, pp.903-915, 2007.

T. R. Peterson, M. Laplante, and C. C. Thoreen, DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival, Cell, vol.137, pp.873-886, 2009.

V. Zinzalla, D. Stracka, and W. Oppliger, Activation of mTORC2 by association with the ribosome, Cell, vol.144, pp.757-768, 2011.

D. A. Guertin, D. M. Stevens, and C. C. Thoreen, Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1, Dev Cell, vol.11, pp.859-871, 2006.

D. D. Sarbassov, S. M. Ali, and D. H. Kim, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton, Curr Biol, vol.14, pp.1296-1302, 2004.

J. E. Loewith, R. Schmidt, and A. , Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive, Nat Cell Biol, vol.6, pp.1122-1128, 2004.

M. A. Frias, C. C. Thoreen, and J. D. Jaffe, mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s, Curr Biol, vol.16, pp.1865-1870, 2006.

L. R. Pearce, X. Huang, and J. Boudeau, Identification of Protor as a novel Rictor-binding component of mTOR complex-2, Biochem J, vol.405, pp.513-522, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478790

C. C. Dibble, J. M. Asara, and B. D. Manning, Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1, Mol Cell Biol, vol.29, pp.5657-5670, 2009.

C. Procaccini, D. Rosa, V. Galgani, and M. , An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness, Immunity, vol.33, pp.929-941, 2010.

D. Gao, H. Inuzuka, and M. K. Tan, mTOR drives its own activation via SCF(betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR, Mol Cell, vol.44, pp.290-303, 2011.

Y. Zhao, X. Xiong, and Y. Sun, DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy, Mol Cell, vol.44, pp.304-316, 2011.

Z. Luo, Y. Pan, and L. S. Jeong, Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells, Autophagy, vol.8, pp.1677-1679, 2012.

M. Liu, S. A. Wilk, and A. Wang, Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR, J Biol Chem, vol.285, pp.36387-36394, 2010.

F. Das, A. Bera, and N. Ghosh-choudhury, TGFbeta-Induced Deptor Suppression Recruits mTORC1 and Not mTORC2 to Enhance Collagen I (alpha2) Gene Expression, PLoS One, vol.9, 2014.

R. Bijkerk, C. Van-solingen, and H. C. De-boer, Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity, J Am Soc Nephrol, vol.25, pp.1710-1722, 2014.

D. Anglicheau, V. K. Sharma, and R. Ding, MicroRNA expression profiles predictive of human renal allograft status, Proc Natl Acad Sci U S A, vol.106, pp.5330-5335, 2009.

P. S. Mitchell, R. K. Parkin, and E. M. Kroh, Circulating microRNAs as stable blood-based markers for cancer detection, Proc Natl Acad Sci U S A, vol.105, pp.10513-10518, 2008.

J. A. Weber, D. H. Baxter, and S. Zhang, The microRNA spectrum in 12 body fluids, Clin Chem, vol.56, pp.1733-1741, 2010.

V. R. Mas, C. I. Dumur, and M. J. Scian, MicroRNAs as biomarkers in solid organ transplantation, Am J Transplant, vol.13, pp.11-19, 2013.

C. Hartono, T. Muthukumar, and M. Suthanthiran, Noninvasive diagnosis of acute rejection of renal allografts, Curr Opin Organ Transplant, vol.15, pp.35-41, 2010.

T. J. Rabelink, H. C. De-boer, and A. J. Van-zonneveld, Endothelial activation and circulating markers of endothelial activation in kidney disease, Nat Rev Nephrol, vol.6, pp.404-414, 2010.

J. E. Fish, M. M. Santoro, and S. U. Morton, miR-126 regulates angiogenic signaling and vascular integrity, Dev Cell, vol.15, pp.272-284, 2008.

S. Wang, A. B. Aurora, and B. A. Johnson, The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis, Dev Cell, vol.15, pp.261-271, 2008.

F. Kuhnert, M. R. Mancuso, and J. Hampton, Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126, Development, vol.135, pp.3989-3993, 2008.

C. Van-solingen, L. Seghers, and R. Bijkerk, Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis, J Cell Mol Med, vol.13, pp.1577-1585, 2009.

T. A. Harris, M. Yamakuchi, and M. Ferlito, MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1, Proc Natl Acad Sci U S A, vol.105, pp.1516-1521, 2008.

S. A. Asgeirsdottir, C. Van-solingen, and N. F. Kurniati, MicroRNA-126 contributes to renal microvascular heterogeneity of VCAM-1 protein expression in acute inflammation, Am J Physiol Renal Physiol, vol.302, pp.1630-1639, 2012.

S. Grundmann, F. P. Hans, and S. Kinniry, MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells, Circulation, vol.123, pp.999-1009, 2011.

C. Jin, Y. Zhao, and L. Yu, MicroRNA-21 mediates the rapamycin-induced suppression of endothelial proliferation and migration, FEBS Lett, vol.587, pp.378-385, 2013.

R. Kumarswamy, I. Volkmann, and V. Jazbutyte, Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21, Arterioscler Thromb Vasc Biol, vol.32, pp.361-369, 2012.

X. Y. Zhang, B. R. Shen, and Y. C. Zhang, Induction of thoracic aortic remodeling by endothelialspecific deletion of microRNA-21 in mice, PLoS One, vol.8, 2013.

Y. Suarez, C. Wang, and T. D. Manes, Cutting edge: TNF-induced microRNAs regulate TNFinduced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation, J Immunol, vol.184, pp.21-25, 2010.

X. Sun, B. Icli, and A. K. Wara, MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation, J Clin Invest, vol.122, pp.1973-1990, 2012.

Y. Fang, C. Shi, and E. Manduchi, MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro, Proc Natl Acad Sci U S A, vol.107, pp.13450-13455, 2010.

N. Zhu, D. Zhang, and S. Chen, Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration, Atherosclerosis, vol.215, pp.286-293, 2011.

H. S. Cheng, N. Sivachandran, and A. Lau, MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways, EMBO Mol Med, vol.5, pp.949-966, 2013.

H. Valadi, K. Ekstrom, and A. Bossios, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, vol.9, pp.654-659, 2007.

M. P. Hunter, N. Ismail, and X. Zhang, Detection of microRNA expression in human peripheral blood microvesicles, PLoS One, vol.3, 2008.

S. Gilad, E. Meiri, and Y. Yogev, Serum microRNAs are promising novel biomarkers, PLoS One, vol.3, 2008.

K. P. Daly, M. P. Stack, and M. Eisenga, VEGF-A predicts the development of moderate or severe cardiac allograft vasculopathy in pediatric heart transplant recipients, Am J Transplant Supplement, vol.14, p.4, 2014.

K. P. Daly, R. C. Starling, and B. Armstrong, Changes in plasma levels of VEGF-C and Endothelin-1 during the first post-transplant year are predictive of cardiac allograft vasculopathy: Results from the CTOT-05 study, Am J Transplant Supplement, vol.14, p.878, 2014.

R. Danger, A. Pallier, and M. Giral, Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant, J Am Soc Nephrol, vol.23, pp.597-606, 2012.

R. Danger, C. Paul, and M. Giral, Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection, PLoS One, vol.8, p.60702, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02165884

L. Wei, M. Wang, and X. Qu, Differential expression of microRNAs during allograft rejection, Am J Transplant, vol.12, pp.1113-1123, 2012.

J. M. Lorenzen, I. Volkmann, and J. Fiedler, Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients, Am J Transplant, vol.11, pp.2221-2227, 2011.

M. J. Scian, D. G. Maluf, and K. G. David, MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA, Am J Transplant, vol.11, pp.2110-2122, 2011.

D. G. Maluf, C. I. Dumur, and J. L. Suh, The urine microRNA profile may help monitor posttransplant renal graft function, Kidney Int, vol.85, pp.439-449, 2014.

X. Y. Wu, W. D. Fan, and R. Fang, Regulation of microRNA-155 in endothelial inflammation by targeting nuclear factor (NF)-kappaB P65, J Cell Biochem, vol.115, pp.1928-1936, 2014.

H. X. Sun, D. Y. Zeng, and R. T. Li, Essential role of microRNA-155 in regulating endotheliumdependent vasorelaxation by targeting endothelial nitric oxide synthase, Hypertension, vol.60, pp.1407-1414, 2012.

G. H. Dai, P. Z. Ma, and X. B. Song, MicroRNA-223-3p inhibits the angiogenesis of ischemic cardiac microvascular endothelial cells via affecting RPS6KB1/hif-1a signal pathway, PLoS One, vol.9, p.108468, 2014.

L. Shi, B. Fisslthaler, and N. Zippel, MicroRNA-223 antagonizes angiogenesis by targeting beta1 integrin and preventing growth factor signaling in endothelial cells, Circ Res, vol.113, pp.1320-1330, 2013.

Y. Huang, Y. Liu, and L. Li, Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury, BMC Nephrol, vol.15, p.142, 2014.

Y. Wei, M. Nazari-jahantigh, and P. Neth, MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis?, Arterioscler Thromb Vasc Biol, vol.33, pp.449-454, 2013.

R. Bijkerk, R. G. De-bruin, and C. Van-solingen, MicroRNA-155 functions as a negative regulator of RhoA signaling in TGF-beta-induced endothelial to mesenchymal transition, Microrna, vol.1, pp.2-10, 2012.

. Bruneau, , p.15

, Author manuscript; available in PMC, Pediatr Nephrol, 2016.