K. J. Lafferty and M. A. Jones, Reactions of the graft versus host (GVH) type, Aust J Exp Biol Med Sci, vol.47, pp.17-54, 1969.

K. J. Lafferty, I. S. Misko, and M. A. Cooley, Allogeneic stimulation modulates the in vitro response of T cells to transplantation antigen, Nature, vol.249, pp.275-281, 1974.

A. G. Baxter and P. D. Hodgkin, Activation rules: the two-signal theories of immune activation, Nat Rev Immunol, vol.2, pp.439-485, 2002.

M. L. Ford and C. P. Larsen, Translating costimulation blockade to the clinic: lessons learned from three pathways, Immunol Rev, vol.229, pp.294-306, 2009.

F. Vincenti, C. Larsen, A. Durrbach, T. Wekerle, B. Nashan et al., Costimulation blockade with belatacept in renal transplantation, N Engl J Med, vol.353, pp.770-81, 2005.

L. K. Selin and M. A. Brehm, Frontiers in nephrology: heterologous immunity, T cell cross-reactivity, and alloreactivity, J Am Soc Nephrol, vol.18, pp.2268-77, 2007.

J. Sprent and C. D. Surh, T cell memory, Annu Rev Immunol, vol.20, pp.551-79, 2002.

D. Mou, J. Espinosa, D. J. Lo, and A. D. Kirk, CD28 negative T cells: is their loss our gain?: CD28 negative T cells, Am J Transplant, vol.14, pp.2460-2466, 2014.

N. Weng, A. N. Akbar, and J. Goronzy, CD28 ? T cells: their role in the age-associated decline of immune function, Trends Immunol, vol.30, pp.306-318, 2009.

A. N. Vallejo, CD28 extinction in human T cells: altered functions and the program of T-cell senescence, Immunol Rev, vol.205, pp.158-69, 2005.

N. P. Restifo and L. Gattinoni, Lineage relationship of effector and memory T cells, Curr Opin Immunol, vol.25, pp.556-63, 2013.

N. P. Restifo, Big bang theory of stem-like T cells confirmed, Blood, vol.124, pp.476-483, 2014.

Y. D. Mahnke, T. M. Brodie, F. Sallusto, M. Roederer, and E. Lugli, The who's who of T-cell differentiation: human memory T-cell subsets, Eur J Immunol, vol.43, pp.2797-809, 2013.

Y. Zhu, S. Yao, and L. Chen, Cell surface signaling molecules in the control of immune responses: a tide model, Immunity, vol.34, pp.466-78, 2011.

K. Inaba and R. M. Steinman, Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release, J Exp Med, vol.160, pp.1717-1752, 1984.

J. P. Metlay, E. Puré, and R. M. Steinman, Distinct features of dendritic cells and anti-Ig activated B cells as stimulators of the primary mixed leukocyte reaction, J Exp Med, vol.169, pp.239-54, 1989.

M. Croft, L. M. Bradley, and S. L. Swain, Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells, J Immunol, vol.152, pp.2675-85, 1994.

M. Croft, Activation of naive, memory and effector T cells, Curr Opin Immunol, vol.6, pp.90123-90129, 1994.

C. A. London, M. P. Lodge, and A. K. Abbas, Functional responses and costimulator dependence of memory CD4+ T cells, J Immunol, vol.164, pp.265-72, 2000.

M. F. Bachmann, A. Gallimore, S. Linkert, V. Cerundolo, A. Lanzavecchia et al., Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells, J Exp Med, vol.189, pp.1521-1551, 1999.

A. C. Boesteanu and P. D. Katsikis, Memory T cells need CD28 costimulation to remember, Semin Immunol, vol.21, pp.69-77, 2009.

A. Viola and A. Lanzavecchia, T cell activation determined by T cell receptor number and tunable thresholds, Science, vol.273, pp.104-110, 1996.

T. M. Kündig, A. Shahinian, K. Kawai, H. Mittrücker, E. Sebzda et al., Duration of TCR stimulation determines costimulatory requirement of T cells, Immunity, vol.5, pp.41-52, 1996.

M. Suresh, J. K. Whitmire, L. E. Harrington, C. P. Larsen, T. C. Pearson et al., Role of CD28-B7 interactions in generation and maintenance of CD8 T cell memory, J Immunol, vol.167, pp.5565-73, 2001.

A. Shahinian, K. Pfeffer, K. P. Lee, T. M. Kundig, K. Kishihara et al., Differential T cell costimulatory requirements in CD28-deficient mice, Science, vol.261, pp.609-621, 1993.

J. E. Christensen, J. P. Christensen, N. N. Kristensen, N. Hansen, A. Stryhn et al., Role of CD28 co-stimulation in generation and maintenance of virus-specific T cells, Int Immunol, vol.14, pp.701-712, 2002.

M. Grujic, C. Bartholdy, M. Remy, D. D. Pinschewer, J. P. Christensen et al., The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus, J Immunol, vol.185, pp.1730-1773, 2010.

M. S. Vacchio, J. A. Williams, and R. J. Hodes, A novel role for CD28 in thymic selection: elimination of CD28/B7 interactions increases positive selection, Eur J Immunol, vol.35, pp.418-445, 2005.

X. Zheng, J. Gao, C. X. Wang, Y. Liu, Y. Wen et al., B7-CD28 interaction promotes proliferation and survival but suppresses differentiation of CD4-CD8-T cells in the thymus, J Immunol, vol.173, pp.2253-61, 2004.

D. J. Zammit, L. S. Cauley, Q. Pham, and L. Lefrançois, Dendritic cells maximize the memory CD8 T cell response to infection, Immunity, vol.22, pp.561-70, 2005.

G. T. Belz, N. S. Wilson, C. M. Smith, A. M. Mount, F. R. Carbone et al., Bone marrow-derived cells expand memory CD8+ T cells in response to viral infections of the lung and skin, Eur J Immunol, vol.36, pp.327-362, 2006.

J. A. Bluestone, . St, E. W. Clair, and L. A. Turka, CTLA4Ig: bridging the basic immunology with clinical application, Immunity, vol.24, pp.233-241, 2006.

S. J. Khoury, E. Akalin, A. Chandraker, L. A. Turka, P. S. Linsley et al., CD28-B7 costimulatory blockade by CTLA4Ig prevents actively induced experimental autoimmune encephalomyelitis and inhibits Th1 but spares Th2 cytokines in the central nervous system, J Immunol, vol.155, pp.4521-4525, 1995.

J. R. Abrams, M. G. Lebwohl, C. A. Guzzo, B. V. Jegasothy, M. T. Goldfarb et al., CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris, J Clin Invest, vol.103, pp.1243-52, 1999.

J. M. Kremer, R. Westhovens, M. Leon, D. Giorgio, E. Alten et al., Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig, N Engl J Med, vol.349, pp.1907-1922, 2003.

E. M. Bertram, A. Tafuri, A. Shahinian, V. S. Chan, L. Hunziker et al., Role of ICOS versus CD28 in antiviral immunity, Eur J Immunol, vol.32, pp.3376-85, 2002.

E. M. Bertram, P. Lau, and T. H. Watts, Temporal segregation of 4-1BB versus CD28-mediated costimulation: 4-1BB ligand influences T cell numbers late in the primary response and regulates the size of the T cell memory response following influenza infection, J Immunol, vol.168, pp.3777-85, 2002.

E. M. Bertram, W. Dawicki, B. Sedgmen, J. L. Bramson, D. H. Lynch et al., A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo, J Immunol, vol.172, pp.981-989, 2004.

H. Mittrucker, M. Kursar, A. Kohler, R. Hurwitz, and S. Kaufmann, Role of CD28 for the generation and expansion of antigen-specific CD8+ T lymphocytes during infection with listeria monocytogenes, J Immunol, vol.167, pp.5620-5627, 2001.

H. Mittrücker, A. Köhler, T. W. Mak, and S. H. Kaufmann, Critical role of CD28 in protective immunity against Salmonella typhimurium, J Immunol, vol.163, pp.6769-76, 1999.

S. Fuse, J. J. Obar, S. Bellfy, E. K. Leung, W. Zhang et al., CD80 and CD86 control antiviral CD8+ T-cell function and immune surveillance of murine gammaherpesvirus 68, J Virol, vol.80, pp.9159-70, 2006.

E. N. Villegas, M. M. Elloso, G. Reichmann, R. Peach, and C. A. Hunter, Role of CD28 in the generation of effector and memory responses required for resistance to Toxoplasma gondii, J Immunol, vol.163, pp.3344-53, 1999.

M. P. Ndejembi, J. R. Teijaro, D. S. Patke, A. W. Bingaman, M. R. Chandok et al., Control of memory CD4 T cell recall by the CD28/ B7 costimulatory pathway, J Immunol, vol.177, pp.7698-706, 2006.

S. Fuse, W. Zhang, and E. J. Usherwood, Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response, J Immunol, vol.180, pp.1148-57, 2008.

S. Fuse, C. Tsai, L. M. Rommereim, W. Zhang, and E. J. Usherwood, Differential requirements for CD80/86-CD28 costimulation in primary and memory CD4 T cell responses to vaccinia virus, Cell Immunol, vol.266, pp.130-134, 2011.

J. R. Teijaro, M. N. Njau, D. Verhoeven, S. Chandran, S. G. Nadler et al., Costimulation modulation uncouples protection from immunopathology in memory T cell responses to influenza virus, J Immunol, vol.182, pp.6834-6877, 2009.

K. R. Prilliman, E. E. Lemmens, G. Palioungas, T. G. Wolfe, J. P. Allison et al., Cutting edge: a crucial role for B7-CD28 in transmitting T help from APC to CTL, J Immunol, vol.169, pp.4094-4101, 2002.

A. B. Borowski, A. C. Boesteanu, Y. M. Mueller, C. Carafides, D. J. Topham et al., Memory CD8+ T cells require CD28 costimulation, J Immunol, vol.179, pp.6494-503, 2007.

J. Eberlein, B. Davenport, T. T. Nguyen, F. Victorino, T. Sparwasser et al., Multiple layers of CD80/86-dependent costimulatory activity regulate primary, memory, and secondary lymphocytic choriomeningitis virus-specific T cell immunity, J Virol, vol.86, pp.1955-70, 2012.

M. A. Linterman, A. E. Denton, D. P. Divekar, I. Zvetkova, L. Kane et al., CD28 expression is required after T cell priming for helper T cell responses and protective immunity to infection, Elife, vol.3, p.3180, 2014.

H. Ndlovu, M. Darby, M. Froelich, W. Horsnell, F. Lühder et al., Inducible deletion of CD28 prior to secondary nippostrongylus brasiliensis infection impairs worm expulsion and recall of protective memory CD4+ T cell responses, PLoS Pathog, vol.10, 2014.

V. Kalia, L. A. Penny, Y. Yuzefpolskiy, F. M. Baumann, and S. Sarkar, Quiescence of memory CD8+ T cells is mediated by regulatory T cells through inhibitory receptor CTLA-4, Immunity, vol.42, pp.1116-1145, 2015.

O. S. Qureshi, Y. Zheng, K. Nakamura, K. Attridge, C. Manzotti et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4, Science, vol.332, pp.600-603, 2011.

R. B. Colvin and R. N. Smith, Antibody-mediated organ-allograft rejection, Nat Rev Immunol, vol.5, pp.807-824, 2005.

R. N. Smith, T. Kawai, S. Boskovic, O. Nadazdin, D. H. Sachs et al., Four stages and lack of stable accommodation in chronic alloantibody-mediated renal allograft rejection in cynomolgus monkeys, Am J Transplant, vol.8, pp.1662-72, 2008.

M. Haas, B. Sis, L. C. Racusen, K. Solez, D. Glotz et al., meeting report: inclusion of C4d-negative antibody-mediated rejection and antibody-associated arterial lesions: Banff 2013 meeting report, Am J Transplant, vol.14, pp.272-83, 2013.

P. S. Linsley, P. M. Wallace, J. Johnson, M. G. Gibson, J. L. Greene et al., Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule, Science, vol.257, pp.792-797, 1992.

D. J. Lenschow, Y. Zeng, J. R. Thistlethwaite, A. Montag, W. Brady et al., Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg, Science, vol.257, pp.789-92, 1992.

L. A. Turka, P. S. Linsley, H. Lin, W. Brady, J. M. Leiden et al., T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo, Proc Natl Acad Sci U S A, vol.89, pp.11102-11107, 1992.

A. D. Kirk, D. M. Harlan, N. N. Armstrong, T. A. Davis, Y. Dong et al., CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates, Proc Natl Acad Sci U S A, vol.94, pp.8789-94, 1997.

A. D. Kirk, D. K. Tadaki, A. Celniker, D. S. Batty, J. D. Berning et al., Induction therapy with monoclonal antibodies specific for cd80 and cd86 delays the onset of acute renal allograft rejection in non-human primates1, Transplantation, vol.72, pp.377-84, 2001.

M. G. Levisetti, P. A. Padrid, G. L. Szot, N. Mittal, S. M. Meehan et al., Immunosuppressive effects of human CTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation, J Immunol, vol.159, pp.5187-91, 1997.

C. P. Larsen, T. C. Pearson, A. B. Adams, P. Tso, N. Shirasugi et al., Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties, Am J Transplant, vol.5, pp.443-53, 2005.

F. Vincenti, B. Charpentier, Y. Vanrenterghem, L. Rostaing, B. Bresnahan et al., A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study), Am J Transplant, vol.10, pp.535-581, 2010.

R. M. Welsh and L. K. Selin, No one is naive: the significance of heterologous T-cell immunity, Nat Rev Immunol, vol.2, pp.417-443, 2002.

S. R. Burrows, R. Khanna, J. M. Burrows, and D. J. Moss, An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graft-versus-host disease, J Exp Med, vol.179, pp.1155-61, 1994.

M. A. Brehm, T. G. Markees, K. A. Daniels, D. L. Greiner, A. A. Rossini et al., Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections, J Immunol, vol.170, pp.4077-86, 2003.

N. J. Felix, D. L. Donermeyer, S. Horvath, J. J. Walters, M. L. Gross et al.,

, Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes, Nat Immunol, vol.8, pp.388-97, 2007.

W. A. Macdonald, Z. Chen, S. Gras, J. K. Archbold, F. E. Tynan et al., T cell allorecognition via molecular mimicry, Immunity, vol.31, pp.897-908, 2009.
DOI : 10.1016/j.immuni.2009.09.025

URL : https://doi.org/10.1016/j.immuni.2009.09.025

A. L. Amir, D. 'orsogna, L. Roelen, D. L. Van-loenen, M. M. Hagedoorn et al., Allo-HLA reactivity of virus-specific memory T cells is common, Blood, vol.115, pp.3146-57, 2010.

B. Pantenburg, F. Heinzel, L. Das, P. S. Heeger, and A. Valujskikh, T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection, J Immunol, vol.169, pp.3686-93, 2002.

A. Valujskikh, B. Pantenburg, and P. S. Heeger, Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice, Am J Transplant, vol.2, pp.501-510, 2002.

A. B. Adams, M. A. Williams, T. R. Jones, N. Shirasugi, M. M. Durham et al., Heterologous immunity provides a potent barrier to transplantation tolerance, J Clin Invest, vol.111, pp.1887-95, 2003.

O. Nadazdin, S. Boskovic, T. Murakami, G. Tocco, R. Smith et al., Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates, Sci Transl Med, vol.3, 2011.

A. B. Adams, T. C. Pearson, and C. P. Larsen, Heterologous immunity: an overlooked barrier to tolerance, Immunol Rev, vol.196, pp.147-60, 2003.

F. G. Lakkis, Memory T cells: a hurdle to immunologic tolerance, J Am Soc Nephrol, vol.14, pp.2402-2412, 2003.

J. M. Ali, E. M. Bolton, J. A. Bradley, and G. J. Pettigrew, Allorecognition pathways in transplant rejection and tolerance, Transplantation, vol.96, pp.681-689, 2013.

S. Crotty, Follicular helper CD4 T cells (T FH), Annu Rev Immunol, vol.29, pp.621-63, 2011.

T. M. Conlon, K. Saeb-parsy, J. L. Cole, R. Motallebzadeh, M. S. Qureshi et al., Germinal center alloantibody responses are mediated exclusively by indirect-pathway CD4 T follicular helper cells, J Immunol, vol.188, pp.2643-52, 2012.

D. Stapler, E. D. Lee, S. A. Selvaraj, A. G. Evans, L. S. Kean et al., Expansion of effector memory TCR V 4+CD8+ T cells is associated with latent infection-mediated resistance to transplantation tolerance, J Immunol, vol.180, pp.3190-200, 2008.

T. L. Floyd, B. H. Koehn, W. H. Kitchens, J. M. Robertson, J. A. Cheeseman et al., Limiting the amount and duration of antigen exposure during priming increases memory T cell requirement for costimulation during recall, J Immunol, vol.186, pp.2033-2074, 2011.

H. Xu, S. D. Perez, J. Cheeseman, A. K. Mehta, and A. D. Kirk, The allo-and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation: belatacept efficacy and T cell maturation, Am J Transplant, vol.14, pp.319-351, 2014.

T. A. Weaver, A. H. Charafeddine, A. Agarwal, A. P. Turner, M. Russell et al., Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates, Nat Med, vol.15, pp.746-755, 2009.

S. M. Krummey, T. L. Floyd, D. Liu, M. E. Wagener, M. Song et al., Candidaelicited murine Th17 cells express high CTLA-4 compared with Th1 cells and are resistant to costimulation blockade, J Immunol, vol.192, pp.2495-504, 2014.

S. M. Krummey, J. A. Cheeseman, J. A. Conger, P. S. Jang, A. K. Mehta et al., High CTLA-4 expression on Th17 cells results in increased sensitivity to CTLA-4 coinhibition and resistance to belatacept: Th17 cells have high CTLA-4 expression, Am J Transplant, vol.14, pp.607-621, 2014.

M. H. Oberbarnscheidt, Y. Ng, and G. Chalasani, The roles of CD8 central and effector memory T-cell subsets in allograft rejection, Am J Transplant, vol.8, pp.1809-1827, 2008.

V. Kalia, S. Sarkar, and R. Ahmed, Fine-tuning CD4+ central memory T cell heterogeneity by strength of stimulation, Eur J Immunol, vol.38, pp.15-24, 2008.

M. G. Betjes, A. W. Langerak, A. Van-der-spek, E. A. De-wit, and N. H. Litjens, Premature aging of circulating T cells in patients with end-stage renal disease, Kidney Int, vol.80, pp.208-225, 2011.

T. Crepin, C. Carron, C. Roubiou, B. Gaugler, E. Gaiffe et al., ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients: ATG and immune senescence in transplanted patients, Am J Transplant, vol.15, pp.1028-1066, 2015.

J. M. Venner, K. S. Famulski, D. Badr, L. G. Hidalgo, J. Chang et al., Molecular landscape of T cell-mediated rejection in human kidney transplants: prominence of CTLA4 and PD ligands: molecular phenotype of TCMR, Am J Transplant, vol.14, pp.2565-76, 2014.

F. Haspot, C. Seveno, A. Dugast, F. Coulon, K. Renaudin et al., Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR-class II-B7+ regulatory cells, Am J Transplant, vol.5, pp.2339-2387, 2005.

N. Poirier, A. M. Azimzadeh, T. Zhang, N. Dilek, C. Mary et al., Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation, Sci Transl Med, vol.2, pp.17-27, 2010.

N. Poirier, C. Mary, N. Dilek, J. Hervouet, D. Minault et al., Preclinical efficacy and immunological safety of FR104, an antagonist anti-CD28 monovalent fab? antibody: preclinical efficacy and safety of FR104, Am J Transplant, vol.12, pp.2630-2670, 2012.

N. Poirier, N. Dilek, C. Mary, S. Ville, F. Coulon et al., FR104, an antagonist anti-CD28 monovalent fab' antibody, prevents alloimmunization and allows calcineurin inhibitor minimization in nonhuman primate renal allograft: FR104 prevents allograft rejection, Am J Transplant, vol.15, pp.88-100, 2015.

S. J. Suchard, P. M. Davis, S. Kansal, D. K. Stetsko, R. Brosius et al., A monovalent anti-human CD28 domain antibody antagonist: preclinical efficacy and safety, J Immunol, vol.191, pp.4599-610, 2013.
DOI : 10.4049/jimmunol.1300470

URL : http://www.jimmunol.org/content/191/9/4599.full.pdf

S. L. Shiao, J. M. Mcniff, T. Masunaga, K. Tamura, K. Kubo et al., Immunomodulatory properties of FK734, a humanized anti-CD28 monoclonal antibody with agonistic and antagonistic activities, Transplantation, vol.83, pp.304-317, 2007.
DOI : 10.1097/01.tp.0000251426.46312.d5

X. Yu, M. H. Albert, P. J. Martin, and C. Anasetti, CD28 ligation induces transplantation tolerance by IFN-?-dependent depletion of T cells that recognize alloantigens, J Clin Invest, vol.113, 2004.

X. Yu, S. J. Bidwell, P. J. Martin, and C. Anasetti, CD28-specific antibody prevents graft-versus-host disease in mice, J Immunol, vol.164, pp.4564-4572, 2000.

X. Yu, P. J. Martin, and C. Anasetti, CD28 signal enhances apoptosis of CD8 T cells after strong TCR ligation, J Immunol, vol.170, pp.3002-3008, 2003.

G. Suntharalingam, M. R. Perry, S. Ward, S. J. Brett, A. Castello-cortes et al., Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412, N Engl J Med, vol.355, pp.1018-1046, 2006.

T. Zhang, S. Fresnay, E. Welty, N. Sangrampurkar, E. Rybak et al., Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner: selective CD28 blockade requires CTLA-4, Am J Transplant, vol.11, pp.1599-609, 2011.

K. Wing, T. Yamaguchi, and S. Sakaguchi, Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation, Trends Immunol, vol.32, pp.428-461, 2011.

F. S. Hodi, S. J. O'day, D. F. Mcdermott, R. W. Weber, J. A. Sosman et al., Improved survival with ipilimumab in patients with metastatic melanoma, N Engl J Med, vol.363, pp.711-734, 2010.

C. Robert, L. Thomas, I. Bondarenko, S. O'day, J. Weber et al., Ipilimumab plus dacarbazine for previously untreated metastatic melanoma, N Engl J Med, vol.364, pp.2517-2543, 2011.

K. S. Peggs, S. A. Quezada, C. A. Chambers, A. J. Korman, and J. P. Allison, Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies, J Exp Med, vol.206, pp.1717-1742, 2009.

T. R. Simpson, F. Li, W. Montalvo-ortiz, M. A. Sepulveda, K. Bergerhoff et al., Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma, J Exp Med, vol.210, 2013.

Y. Bulliard, R. Jolicoeur, M. Windman, S. M. Rue, S. Ettenberg et al., Activating Fc receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies, J Exp Med, vol.210, pp.1685-93, 2013.

M. J. Selby, J. J. Engelhardt, M. Quigley, K. A. Henning, T. Chen et al., Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells, Cancer Immunol Res, vol.1, pp.32-42, 2013.

A. V. Maker, P. Attia, and S. A. Rosenberg, Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade, J Immunol, vol.175, pp.7746-54, 2005.

B. Comin-anduix, Y. Lee, J. Jalil, A. Algazi, P. De-la-rocha et al., Detailed analysis of immunologic effects of the cytotoxic T lymphocyte-associated antigen 4-blocking monoclonal antibody tremelimumab in peripheral blood of patients with melanoma, J Transl Med, vol.6, p.22, 2008.

G. Y. Ku, J. Yuan, D. B. Page, S. Schroeder, K. S. Panageas et al., Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival, Cancer, vol.116, pp.1767-75, 2010.

W. Wang, D. Yu, A. A. Sarnaik, B. Yu, M. Hall et al., Biomarkers on melanoma patient T cells associated with ipilimumab treatment, J Transl Med, vol.10, pp.146-146, 2012.

R. R. Huang, J. Jalil, J. S. Economou, B. Chmielowski, R. C. Koya et al., CTLA4 blockade induces frequent tumor infiltration by activated lymphocytes regardless of clinical responses in humans, Clin Cancer Res, vol.17, pp.4101-4110, 2011.

O. Hamid, H. Schmidt, A. Nissan, L. Ridolfi, S. Aamdal et al., A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma, J Transl Med, vol.9, p.204, 2011.

J. Chasalow, S. D. Wang, L. Hamid, O. Schmidt, H. Cogswell et al., An immune-active tumor microenvironment favors clinical response to ipilimumab, Cancer Immunol Immunother, vol.61, pp.1019-1050, 2012.

J. Yuan, M. Adamow, B. A. Ginsberg, T. S. Rasalan, E. Ritter et al., Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab, Proc Natl Acad Sci U S A, vol.108, pp.16723-16731, 2011.

E. Cha, M. Klinger, Y. Hou, C. Cummings, A. Ribas et al., Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients, Sci Transl Med, vol.6, pp.238-70, 2014.

M. M. Gubin, X. Zhang, H. Schuster, C. E. Ward, J. P. Noguchi et al., Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens, Nature, vol.515, pp.577-81, 2014.
DOI : 10.1038/nature13988

URL : http://europepmc.org/articles/pmc4279952?pdf=render

-. Twyman, C. Victor, A. J. Rech, A. Maity, R. Rengan et al., Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer, Nature, vol.520, pp.373-380, 2015.

F. Fallarino, P. E. Fields, and T. F. Gajewski, B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28, J Exp Med, vol.188, pp.205-215, 1998.

W. J. Sandborn, J. Colombel, B. E. Sands, P. Rutgeerts, S. R. Targan et al., Abatacept for Crohn's disease and ulcerative colitis, Gastroenterology, vol.143, pp.62-69, 2012.

L. M. Amezcua-guerra, B. Hernández-martínez, C. Pineda, and R. Bojalil, Ulcerative colitis during CTLA-4Ig therapy in a patient with rheumatoid arthritis, Gut, vol.55, pp.1059-60, 2006.

M. Sabet-baktach, E. Eggenhofer, P. Renner, M. Lantow, H. Schlitt et al., Eomes-expressing CD8+ T cells and Th17 cells mediate costimulatory blockade-resistant allograft rejection in mice, Am J Transplant, issue.3, p.1, 2015.

E. J. Kim, J. Kwun, A. C. Gibby, J. J. Hong, A. B. Farris et al., Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection: costimulation blockade alters GC response, Am J Transplant, vol.14, pp.59-69, 2014.

M. A. Linterman, R. J. Rigby, R. Wong, D. Silva, D. Withers et al., Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes Cd28and ICOS, Immunity, vol.30, pp.228-269, 2009.

P. T. Sage, A. M. Paterson, S. B. Lovitch, and A. H. Sharpe, The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells, Immunity, vol.41, pp.1026-1065, 2014.

S. Ville, N. Poirier, B. Vanhove, and G. Blancho, Selective blockade of the CD28/B7/ CTLA4 pathway with monovalent anti-CD28 antibodies versus targeting of B7 With CTLA4-Ig, in non-human primate kidney allograft, Am J Transplant, issue.3, p.1, 2015.

A. Petrelli, M. Carvello, A. Vergani, K. M. Lee, S. Tezza et al., IL-21 is an antitolerogenic cytokine of the late-phase alloimmune response, Diabetes, vol.60, pp.3223-3257, 2011.