J. Stanovici, L. Nail, L. Brennan, M. A. Vidal, L. Trichet et al., Bone regeneration strategies with bone marrow stromal cells in orthopaedic surgery, Curr Res Transl Med, vol.64, pp.83-90, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01702061

K. Abe, N. Yamamoto, K. Hayashi, A. Takeuchi, S. Miwa et al., The usefulness of wide excision assisted by a computer navigation system and reconstruction using a frozen bone autograft for malignant acetabular bone tumors: a report of two cases, BMC Cancer, vol.18, p.1036, 2018.

E. Ahlmann, M. Patzakis, N. Roidis, L. Shepherd, and P. Holtom, Comparison of anterior and posterior iliac crest bone grafts in terms of harvestsite morbidity and functional outcomes, J Bone Joint Surg Am, pp.84-716, 2002.

P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, Bone substitutes: an update, Injury, vol.36, pp.20-27, 2005.

F. H. Albee, Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis, Ann Surg, vol.71, pp.32-41, 1920.

M. H. Mankani, S. A. Kuznetsov, R. M. Wolfe, G. W. Marshall, and P. G. Robey, In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible, Stem Cells, vol.24, pp.2140-2149, 2006.

M. H. Mankani, S. A. Kuznetsov, and P. G. Robey, Formation of hematopoietic territories and bone by transplanted human bone marrow stromal cells requires a critical cell density, Exp Hematol, vol.35, pp.995-1004, 2007.

D. Granchi, E. Gómez-barrena, M. Rojewski, P. Rosset, P. Layrolle et al., Changes of bone turnover markers in long bone nonunions treated with a regenerative approach, Stem Cells Int, vol.2017, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01671301

M. Á. Brennan, A. Renaud, J. Amiaud, M. T. Rojewski, H. Schrezenmeier et al., Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate, Stem Cell Res Ther, vol.5, p.114, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01205389

A. Gamblin, M. A. Brennan, A. Renaud, H. Yagita, F. Lézot et al., Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: the local implication of osteoclasts and macrophages, Biomaterials, vol.35, pp.9660-9667, 2014.

P. Giannoni, S. Scaglione, A. Daga, C. Ilengo, M. Cilli et al., Shorttime survival and engraftment of bone marrow stromal cells in an ectopic model of bone regeneration, Tissue Eng Part A, vol.16, pp.489-99, 2010.

S. Otsuru, P. L. Gordon, K. Shimono, R. Jethva, R. Marino et al., Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms, Blood, vol.120, pp.1933-1974, 2012.

C. Götherström, M. Westgren, S. Shaw, E. Åström, A. Biswas et al., Pre-and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience, Stem Cells Transl Med, vol.3, pp.255-64, 2014.

L. Blanc, K. Götherström, C. Ringdén, O. Hassan, M. Mcmahon et al., Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta, Transplantation, vol.79, pp.1607-1621, 2005.

E. M. Horwitz, P. L. Gordon, W. Koo, J. C. Marx, M. D. Neel et al., Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone, Proc Natl Acad Sci, vol.99, pp.8932-8939, 2002.

E. M. Horwitz, D. J. Prockop, L. A. Fitzpatrick, W. Koo, P. L. Gordon et al., Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta, Nat Med, vol.5, pp.309-322, 1999.

G. Tour, M. Wendel, and I. Tcacencu, Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction, J Tissue Eng Regen Med, vol.8, pp.841-850, 2014.

X. Qi, J. Zhang, H. Yuan, Z. Xu, Q. Li et al., Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats, Int J Biol Sci, vol.12, pp.836-885, 2016.

A. Barradas, H. Yuan, C. Van-blitterswijk, and P. Habibovic, Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms, Eur Cells Mater, vol.21, pp.407-436, 2011.

G. Daculsi, R. Z. Legeros, N. E. Lynch, K. Kerebel, and B. , Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization, J Biomed Mater Res, vol.23, pp.883-94, 1989.

P. Habibovic, H. Yuan, C. M. Van-der-valk, G. Meijer, C. A. Van-blitterswijk et al., 3D microenvironment as essential element for osteoinduction by biomaterials, Biomaterials, vol.26, pp.3565-75, 2005.
DOI : 10.1016/j.biomaterials.2004.09.056

D. Le-nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace et al., Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles, Bone, vol.36, pp.1086-93, 2005.

U. Ripamonti, L. C. Roden, C. Ferretti, and R. M. Klar, Biomimetic matrices selfinitiating the induction of bone formation, J Craniofac Surg, vol.22, 2011.

B. H. Fellah, O. Gauthier, P. Weiss, D. Chappard, and P. Layrolle, Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model, Biomaterials, vol.29, pp.1177-88, 2008.

L. Diaz-flores, R. Gutierrez, A. Lopez-alonso, R. Gonzalez, and H. Varela, Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis, Clin Orthop Relat Res, pp.280-286, 1992.

M. Bohner and R. J. Miron, A proposed mechanism for materialinduced heterotopic ossification, vol.22, pp.132-173, 2018.

A. Barradas, H. Yuan, J. Van-der-stok, L. Quang, B. Fernandes et al., The influence of genetic factors on the osteoinductive potential of calcium phosphate ceramics in mice, Semin Immunol, vol.33, pp.86-100, 2008.

L. Batoon, S. M. Millard, L. J. Raggatt, and A. R. Pettit, Osteomacs and bone regeneration, Curr Osteoporos Rep, vol.15, pp.385-95, 2017.
DOI : 10.1007/s11914-017-0384-x

R. J. Miron and D. D. Bosshardt, OsteoMacs: key players around bone biomaterials, Biomaterials, vol.82, pp.1-19, 2016.
DOI : 10.1016/j.biomaterials.2015.12.017

K. A. Alexander, M. K. Chang, E. R. Maylin, T. Kohler, R. Müller et al., Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model, J Bone Miner Res, vol.26, pp.1517-1549, 2011.

L. Batoon, S. M. Millard, M. E. Wullschleger, C. Preda, A. Wu et al., CD169 + macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair, Biomaterials, p.33, 2017.
DOI : 10.1016/j.biomaterials.2017.10.033

URL : http://espace.library.uq.edu.au/view/UQ:691232/UQ691232_OA.pdf

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends Immunol, vol.25, pp.677-86, 2004.

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends Immunol, vol.23, pp.549-55, 2002.

J. A. Jones, D. T. Chang, H. Meyerson, C. E. Kwon, I. K. Matsuda et al., Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells, J Biomed Mater Res Part A, vol.83, pp.585-96, 2007.

S. F. Badylak, J. E. Valentin, A. K. Ravindra, G. P. Mccabe, and A. M. Stewart-akers, Macrophage phenotype as a determinant of biologic scaffold remodeling, Tissue Eng Part A, vol.14, pp.1835-1877, 2008.

S. Takeshita, T. Fumoto, K. Matsuoka, K. Park, H. Aburatani et al., Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation, J Clin Invest, vol.123, pp.3914-3938, 2013.

U. Ripamonti, R. M. Klar, L. F. Renton, and C. Ferretti, Synergistic induction of bone formation by hOP-1, hTGF-?3 and inhibition by zoledronate in macroporous coral-derived hydroxyapatites, Biomaterials, vol.31, pp.6400-6410, 2010.

N. Kondo, A. Ogose, K. Tokunaga, H. Umezu, K. Arai et al., Osteoinduction with highly purified ?-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation, Biomaterials, vol.27, pp.4419-4446, 2006.

F. Barrère-de-groot, . De-bruijn, V. Everts, N. Davison, H. Yuan et al., Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo, Eur Cells Mater, vol.27, pp.281-97, 2016.

T. Tanaka, M. Saito, M. Chazono, Y. Kumagae, T. Kikuchi et al., Effects of alendronate on bone formation and osteoclastic resorption after implantation of beta-tricalcium phosphate, J Biomed Mater Res A, vol.93, pp.469-74, 2010.

N. L. Davison, A. Gamblin, P. Layrolle, H. Yuan, J. D. De-bruijn et al., Liposomal clodronate inhibition of osteoclastogenesis and osteoinduction by submicrostructured beta-tricalcium phosphate, Biomaterials, vol.35, pp.5088-97, 2014.

J. Wang, D. Liu, B. Guo, X. Yang, X. Chen et al., Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs, Acta Biomater, vol.51, pp.447-60, 2017.

M. Wang, F. Chen, J. Wang, X. Chen, J. Liang et al., Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells, J Mater Chem B, vol.6, pp.4765-74, 2018.

A. R. Hayman, Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy, Autoimmunity, vol.41, pp.218-241, 2008.

W. Feng, Osteoclastogenesis and osteoimmunology, Front Biosci, vol.19, p.758, 2014.

M. T. Drake, B. L. Clarke, and S. Khosla, Bisphosphonates: mechanism of action and role in clinical practice, Mayo Clin Proc, vol.83, pp.1032-1077, 2008.

C. G. Shi, Y. Zhang, and W. Yuan, Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta: a systematic review and meta-analysis, Am J Ther, vol.23, pp.894-904, 2016.

A. Biggin and C. F. Munns, Long-term bisphosphonate therapy in osteogenesis imperfecta, Curr Osteoporos Rep, vol.15, pp.412-420, 2017.

N. A. Sims, T. J. Martin, J. Quinn, J. Lorenzo, M. C. Horowitz et al., Coupling: the influences of immune and bone cells, Osteoimmunology: Interactions of the Immune and Skeletal Systems, pp.169-85

S. S. Jensen, R. Gruber, D. Buser, and D. D. Bosshardt, Osteoclast-like cells on deproteinized bovine bone mineral and biphasic calcium phosphate: light and transmission electron microscopical observations, Clin Oral Implants Res, vol.26, pp.859-64, 2015.

K. M. Defife, C. R. Jenney, A. K. Mcnally, C. E. Anderson, and J. M. , Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression, J Immunol, vol.158, pp.3385-90, 1997.

A. K. Mcnally, J. A. Jones, S. R. Macewan, C. E. Anderson, and J. M. , Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation, J Biomed Mater Res Part A, vol.86, pp.535-578, 2008.

B. Ten-harkel, T. Schoenmaker, D. I. Picavet, N. L. Davison, T. J. De-vries et al., The foreign body giant cell cannot resorb bone, but dissolves hydroxyapatite like osteoclasts, PLoS ONE, vol.10, 2015.

G. J. Randolph, K. Inaba, D. F. Robbiani, R. M. Steinman, and W. A. Muller, Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo, Immunity, vol.11, pp.80149-80150, 1999.

M. Merad, P. Sathe, J. Helft, J. Miller, and A. Mortha, The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting, Annu Rev Immunol, vol.31, pp.563-604, 2013.

V. Sokolova, T. Knuschke, A. Kovtun, J. Buer, M. Epple et al., The use of calcium phosphate nanoparticles encapsulating Tolllike receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation, Biomaterials, vol.31, pp.5627-5660, 2010.

B. G. Keselowsky and J. S. Lewis, Dendritic cells in the host response to implanted materials, Semin Immunol, vol.29, pp.33-40, 2017.

S. Vasiliji?, D. Savi?, S. Vasilev, D. Vu?evi?, S. Ga?i? et al., Dendritic cells acquire tolerogenic properties at the site of sterile granulomatous inflammation, Cell Immunol, vol.233, pp.148-57, 2005.

J. Michel, M. Penna, J. Kochen, and H. Cheung, Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells, Stem Cells Int, p.305217, 2015.
DOI : 10.1155/2015/305217

URL : http://downloads.hindawi.com/journals/sci/2015/305217.pdf

R. J. Miron, Y. F. Zhang, and . Osteoinduction, J Dent Res, vol.91, pp.736-780, 2012.

E. García-gareta, M. J. Coathup, and G. W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration, Bone, vol.81, pp.112-133, 2015.

M. A. Brennan, A. Renaud, F. Guilloton, M. Mebarki, V. Trichet et al., Inferior in vivo osteogenesis and superior angiogeneis of human adipose-derived stem cells compared with bone marrow-derived stem cells cultured in xeno-free conditions, Stem Cells Transl Med, vol.6, pp.2160-72, 2017.

C. Gjerde, K. Mustafa, S. Hellem, M. Rojewski, H. Gjengedal et al., Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial, Stem Cell Res Ther, vol.9, p.213, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01859562

E. Gómez-barrena, P. Rosset, F. Gebhard, P. Hernigou, N. Baldini et al., Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial, Biomaterials, vol.196, pp.100-108, 2018.

D. Fang, B. Seo, Y. Liu, W. Sonoyama, T. Yamaza et al., Transplantation of mesenchymal stem cells is an optimal approach for plastic surgery, Stem Cells, vol.25, pp.1021-1029, 2007.

N. Hasegawa, H. Kawaguchi, A. Hirachi, K. Takeda, N. Mizuno et al., Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects, J Periodontol, vol.77, pp.1003-1010, 2006.

Y. Oshima, N. Watanabe, K. Matsuda, S. Takai, M. Kawata et al., Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation, J Histochem Cytochem, vol.53, pp.207-223, 2005.

R. Tasso, A. Augello, S. Boccardo, S. Salvi, M. Caridà et al., Recruitment of a host's osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic, Tissue Eng Part A, vol.15, pp.2203-2215, 2009.

Y. Ando, K. Matsubara, J. Ishikawa, M. Fujio, R. Shohara et al., Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms, Bone, vol.61, pp.82-90, 2014.
DOI : 10.1016/j.bone.2013.12.029

J. Xu, B. Wang, Y. Sun, T. Wu, Y. Liu et al., Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis, Stem Cell Res Ther, vol.7, p.134, 2016.
DOI : 10.1186/s13287-016-0392-2

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/s13287-016-0392-2

M. Osugi, W. Katagiri, R. Yoshimi, T. Inukai, H. Hibi et al., Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects, Tissue Eng Part A, vol.18, pp.1479-89, 2012.
DOI : 10.1089/ten.tea.2011.0325

URL : http://europepmc.org/articles/pmc3397118?pdf=render

J. Skog, T. Würdinger, S. Van-rijn, D. H. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat Cell Biol, vol.10, pp.1470-1476, 2008.
DOI : 10.1038/ncb1800

URL : http://europepmc.org/articles/pmc3423894?pdf=render

H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee et al., Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, vol.9, pp.654-663, 2007.

T. Furuta, S. Miyaki, H. Ishitobi, T. Ogura, Y. Kato et al., Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model, Stem Cells Transl Med, vol.5, pp.1620-1650, 2016.

H. Xie, Z. Wang, L. Zhang, Q. Lei, A. Zhao et al., Extracellular vesicle-functionalized decalcified bone matrix scaffolds with enhanced proangiogenic and pro-bone regeneration activities. Sci Rep, vol.7, p.45622, 2017.

J. Zhang, X. Liu, H. Li, C. Chen, B. Hu et al., Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway, Stem Cell Res Ther, vol.7, p.136, 2016.

S. Otsuru, L. Desbourdes, A. J. Guess, T. J. Hofmann, T. Relation et al., Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta, Cytotherapy, vol.20, pp.62-73, 2018.

J. Burrello, S. Monticone, C. Gai, Y. Gomez, S. Kholia et al., Stem cellderived extracellular vesicles and immune-modulation, Front Cell Dev Biol, vol.4, p.83, 2016.

P. Guihard, Y. Danger, B. Brounais, E. David, R. Brion et al., Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling, Stem Cells, vol.30, pp.762-72, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00668995

P. Guihard, M. Boutet, B. Royer, B. Gamblin, A. Amiaud et al., Oncostatin M, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury, Am J Pathol, vol.185, pp.765-75, 2015.

O. M. Omar, C. Granéli, K. Ekström, C. Karlsson, A. Johansson et al., The stimulation of an osteogenic response by classical monocyte activation, Biomaterials, vol.32, pp.8190-204, 2011.

K. Ekström, O. Omar, C. Granéli, X. Wang, F. Vazirisani et al., Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells, PLoS ONE, vol.8, p.75227, 2013.

L. Gong, Y. Zhao, Y. Zhang, and Z. Ruan, The macrophage polarization regulates MSC osteoblast differentiation in vitro, Ann Clin Lab Sci, vol.46, pp.65-71, 2016.

J. Pajarinen, T. Lin, E. Gibon, Y. Kohno, M. Maruyama et al., Mesenchymal stem cell-macrophage crosstalk and bone healing, Biomaterials, vol.196, pp.80-89, 2018.

Y. Zhang, T. Böse, R. E. Unger, J. A. Jansen, C. J. Kirkpatrick et al., Macrophage type modulates osteogenic differentiation of adipose tissue MSCs, Cell Tissue Res, vol.369, pp.273-86, 2017.

H. R. Caires, B. Da-silva, P. Barbosa, M. A. Almeida, and C. R. , A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment, J Tissue Eng Regen Med, vol.12, 2018.

P. Quint, M. Ruan, L. Pederson, M. Kassem, J. J. Westendorf et al., Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways, J Biol Chem, vol.288, pp.5398-406, 2013.

L. Pederson, M. Ruan, J. J. Westendorf, S. Khosla, and M. J. Oursler, Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate, Proc Natl Acad Sci, vol.105, pp.20764-20773, 2008.

Y. Liu, L. Wang, T. Kikuiri, K. Akiyama, C. Chen et al., Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-? and TNF-?, Nat Med, vol.17, pp.1594-601, 2011.

S. Bouvet-gerbettaz, F. Boukhechba, T. Balaguer, H. Schmid-antomarchi, J. Michiels et al., Adaptive immune response inhibits ectopic mature bone formation induced by BMSCs/BCP/plasma composite in immune-competent mice, Tissue Eng Part A, vol.20, pp.2950-62, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02109588

Y. Su, S. Shi, and Y. Liu, Immunomodulation regulates mesenchymal stem cellbased bone regeneration, Oral Dis, vol.20, pp.633-639, 2014.

M. Najar, G. Raicevic, E. Crompot, H. Fayyad-kazan, D. Bron et al., The immunomodulatory potential of mesenchymal stromal cells, J Immunother, vol.39, pp.45-59, 2016.

J. D. Glenn, Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy, World J Stem Cells, vol.6, p.526, 2014.

G. Bassi, F. Guilloton, C. Menard, D. Trapani, M. Deschaseaux et al., Effects of a ceramic biomaterial on immune modulatory properties and differentiation potential of human mesenchymal stromal cells of different origin, Tissue Eng Part A, vol.21, pp.767-81, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01076081

B. Giebel, L. Kordelas, and V. Börger, Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles, Stem Cell Investig, vol.4, p.84, 2017.

M. Deschepper, M. Manassero, K. Oudina, J. Paquet, L. Monfoulet et al., Proangiogenic and prosurvival functions of glucose in human mesenchymal stem cells upon transplantation, Stem Cells, vol.31, pp.526-561, 2013.

P. Becquart, A. Cambon-binder, L. Monfoulet, M. Bourguignon, K. Vandamme et al., Ischemia is the prime but not the only cause of human multipotent stromal cell death in tissue-engineered constructs in vivo, Tissue Eng Part A, vol.18, pp.2084-94, 2012.

E. Potier, E. Ferreira, A. Meunier, L. Sedel, D. Logeart-avramoglou et al., Prolonged hypoxia concomitant with serum deprivation induces massive human mesenchymal stem cell death, Tissue Eng, vol.13, pp.1325-1356, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01758622

A. Moya, J. Paquet, M. Deschepper, N. Larochette, K. Oudina et al., Human mesenchymal stem cell failure to adapt to glucose shortage and rapidly use intracellular energy reserves through glycolysis explains poor cell survival after implantation, Stem Cells, vol.36, pp.363-76, 2018.

N. H. Nicolay, R. L. Perez, R. Saffrich, P. E. Huber, N. H. Nicolay et al., Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic, Oncotarget, vol.6, pp.19366-80, 2015.

A. G. Laing, Y. Riffo-vasquez, E. Sharif-paghaleh, G. Lombardi, and P. T. Sharpe, Immune modulation by apoptotic dental pulp stem cells in vivo, Immunotherapy, vol.10, pp.201-212, 2018.

A. Galleu, Y. Riffo-vasquez, C. Trento, C. Lomas, L. Dolcetti et al., Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation, Sci Transl Med, vol.9, p.7828, 2017.

M. Sachet, Y. Y. Liang, and R. Oehler, The immune response to secondary necrotic cells, Apoptosis, vol.22, pp.1189-204, 2017.

M. E. Bianchi, M. P. Crippa, A. A. Manfredi, R. Mezzapelle, R. Querini et al., High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair, Immunol Rev, vol.280, pp.74-82, 2017.

V. V. Lunyak, A. Amaro-ortiz, and M. Gaur, Mesenchymal stem cells secretory responses: senescence messaging secretome and immunomodulation perspective. Front Genet, vol.8, pp.1-21, 2017.

M. Madrigal, K. S. Rao, and N. H. Riordan, A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods, J Transl Med, vol.12, p.260, 2014.

S. Sisakhtnezhad, E. Alimoradi, and H. Akrami, External factors influencing mesenchymal stem cell fate in vitro, Eur J Cell Biol, vol.96, pp.13-33, 2017.

L. Silva, M. A. Antunes, D. Santos, C. C. Weiss, D. J. Cruz et al., Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases, Stem Cell Res Ther, vol.9, p.45, 2018.

C. Xue, Y. Shen, X. Li, B. Li, S. Zhao et al., Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway, Stem Cells Dev, vol.27, pp.456-65, 2018.

J. Ban, M. Lee, W. Im, and M. Kim, Low pH increases the yield of exosome isolation, Biochem Biophys Res Commun, vol.461, pp.76-85, 2015.

M. Eldh, K. Ekström, H. Valadi, M. Sjöstrand, B. Olsson et al., Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA, PLoS ONE, vol.5, 2010.

M. Ejtehadifar, K. Shamsasenjan, A. Movassaghpour, P. Akbarzadehlaleh, N. Dehdilani et al., The effect of hypoxia on mesenchymal stem cell biology, Adv Pharm Bull, vol.5, pp.141-150, 2015.

J. Paquet, M. Deschepper, A. Moya, D. Logeart-avramoglou, C. Boissonvidal et al., Oxygen tension regulates human mesenchymal stem cell paracrine functions, Stem Cells Transl Med, vol.4, pp.809-830, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01973949

V. G. Martinez, I. Ontoria-oviedo, C. P. Ricardo, S. E. Harding, R. Sacedon et al., Overexpression of hypoxia-inducible factor 1 alpha improves immunomodulation by dental mesenchymal stem cells, Stem Cell Res Ther, vol.8, p.208, 2017.

A. L. Ponte, E. Marais, N. Gallay, A. Langonné, B. Delorme et al., The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities, Stem Cells, vol.25, pp.1737-1782, 2007.

P. R. Crisostomo, Y. Wang, T. A. Markel, M. Wang, T. Lahm et al., Human mesenchymal stem cells stimulated by TNF-?, LPS, or hypoxia produce growth factors by an NF?B-but not JNK-dependent mechanism, Am J Physiol Physiol, vol.294, pp.675-82, 2007.

M. Roemeling-van-rhijn, F. Mensah, S. S. Korevaar, M. J. Leijs, G. Van-osch et al., Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells, Front Immunol, vol.4, pp.1-8, 2013.

T. Cordonnier, P. Layrolle, J. Gaillard, A. Langonné, L. Sensebé et al., 3D environment on human mesenchymal stem cells differentiation for bone tissue engineering, J Mater Sci Mater Med, vol.21, pp.981-988, 2010.

R. J. Miron, H. Zohdi, M. Fujioka-kobayashi, and D. D. Bosshardt, Giant cells around bone biomaterials: osteoclasts or multi-nucleated giant cells?, Acta Biomater, vol.46, pp.15-28, 2016.

G. J. Ahmed, E. Tatsukawa, K. Morishita, Y. Shibata, F. Suehiro et al., Regulation and biological significance of formation of osteoclasts and foreign body giant cells in an extraskeletal implantation model, Acta Histochem Cytochem, vol.49, pp.97-107, 2016.

U. A. Khan, S. M. Hashimi, M. M. Bakr, M. R. Forwood, and N. A. Morrison, Foreign body giant cells and osteoclasts are TRAP positive, have podosome-belts and both require OC-STAMP for cell fusion, J Cell Biochem, vol.114, pp.1772-1780, 2013.

K. Ogata, W. Katagiri, and H. Hibi, Secretomes from mesenchymal stem cells participate in the regulation of osteoclastogenesis in vitro, Clin Oral Investig, vol.21, pp.1979-88, 2017.

N. J. Horwood, V. Kartsogiannis, J. Quinn, E. Romas, T. J. Martin et al., Activated T lymphocytes support osteoclast formation in vitro, Biochem Biophys Res Commun, vol.265, pp.144-50, 1999.

T. J. Martin and N. A. Sims, RANKL/OPG; critical role in bone physiology, Rev Endocr Metab Disord, vol.16, pp.131-140, 2015.

J. Quinn, K. Itoh, N. Udagawa, K. Häusler, H. Yasuda et al., Transforming growth factor ? affects osteoclast differentiation via direct and indirect actions, J Bone Miner Res, vol.16, pp.1787-94, 2001.

K. Maeda, Y. Kobayashi, N. Udagawa, S. Uehara, A. Ishihara et al., Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis, Nat Med, vol.18, pp.405-417, 2012.

C. Chan, G. S. Gulati, R. Sinha, J. V. Tompkins, M. Lopez et al., Identification of the human skeletal stem cell, Cell, vol.175, pp.43-56, 2018.

N. A. Sims and T. J. Martin, Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit, Bonekey Rep, vol.3, pp.1-10, 2014.

K. Matsuo and N. Irie, Osteoclast-osteoblast communication, Arch Biochem Biophys, vol.473, pp.201-210, 2008.

K. Henriksen, M. A. Karsdal, J. Martin, and T. , Osteoclast-derived coupling factors in bone remodeling, Calcif Tissue Int, vol.94, pp.88-97, 2014.

Y. Ikebuchi, S. Aoki, M. Honma, M. Hayashi, Y. Sugamori et al., Coupling of bone resorption and formation by RANKL reverse signalling, Nature, vol.561, pp.195-200, 2018.

L. Cianferotti, A. R. Gomes, S. Fabbri, A. Tanini, and M. L. Brandi, The calcium-sensing receptor in bone metabolism: from bench to bedside and back, Osteoporos Int, vol.26, pp.2055-71, 2015.

Z. Chen, T. Klein, R. Z. Murray, R. Crawford, J. Chang et al., Osteoimmunomodulation for the development of advanced bone biomaterials, vol.19, pp.304-325, 2016.