R. E. Hammer, V. G. Pursel, C. E. Rexroad, R. J. Wall, D. J. Bolt et al., Production of transgenic rabbits, sheep and pigs by microinjection, Nature, vol.315, issue.6021, p.3892305, 1985.

C. B. Whitelaw, S. G. Lillico, and T. King, Production of transgenic farm animals by viral vector-mediated gene transfer, Reprod Dom Anim, vol.43, issue.2, pp.355-363, 2008.

S. Hyun, G. Lee, D. Kim, H. Kim, S. Lee et al., Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein, Biol Reprod, vol.69, issue.3, p.12773429, 2003.

C. Lois, E. J. Hong, S. Pease, E. J. Brown, and D. Baltimore, Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science, vol.295, issue.5556, p.11786607, 2002.

W. A. Kues and H. Niemann, Advances in farm animal transgenesis, Prev Vet Med, vol.102, issue.2, pp.146-56, 2011.
DOI : 10.1016/j.prevetmed.2011.04.009

G. Vajta, Somatic cell nuclear transfer in its first and second decades: successes, setbacks, paradoxes and perspectives, Reprod Biomed Online, vol.15, issue.5, p.18028751, 2007.

A. Chan, Transgenic animals: current and alternative strategies, Cloning, vol.1, p.16218828, 1999.
DOI : 10.1089/15204559950020076

M. Crispo, M. Vilarino, D. Santos-neto, P. C. Nunez-olivera, R. Cuadro et al., Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis, Transgenic Res, vol.24, issue.1, pp.31-41, 2014.
DOI : 10.1007/s11248-014-9816-x

URL : https://hal.archives-ouvertes.fr/inserm-02148331

S. Remy, L. Tesson, S. Menoret, C. Usal, A. M. Scharenberg et al., Zinc-finger nucleases: a powerful tool for genetic engineering of animals, Transgenic Res, vol.19, issue.3, pp.363-71, 2010.

J. Boch, TALEs of genome targeting, Nat Biotech, vol.29, issue.2, pp.135-141, 2011.
DOI : 10.1038/nbt.1767

F. Delacote, C. Perez, V. Guyot, M. Duhamel, C. Rochon et al., High Frequency Targeted Mutagenesis Using Engineered Endonucleases and DNA-End Processing Enzymes, PloS one, vol.8, issue.1, p.53217, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01606192

S. Menoret, S. Fontaniere, D. Jantz, L. Tesson, R. Thinard et al., Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases, Faseb J, vol.27, issue.2, pp.703-714, 2013.

P. Horvath and R. Barrangou, CRISPR/Cas, the immune system of bacteria and archaea, Science, vol.327, issue.5962, 2010.

K. Whitworth, K. Lee, J. Benne, B. Beaton, L. Spate et al., Use of the CRISPR/Cas9 System to Produce Genetically Engineered Pigs from In Vitro-Derived Oocytes and Embryos, Biol Reprod, vol.91, issue.3, pp.78-79, 2014.

X. Zhou, J. Xin, N. Fan, Q. Zou, J. Huang et al., Generation of CRISPR/Cas9-mediated genetargeted pigs via somatic cell nuclear transfer, Cel Mol Life Sci, vol.2014, issue.6, pp.1175-84

A. Honda, M. Hirose, T. Sankai, Y. L. Yuzawa, K. Honsho et al., Single-Step Generation of Rabbits Carrying a Targeted Allele of the Tyrosinase Gene Using CRISPR/Cas9, Exp Anim, vol.64, issue.1, pp.31-38, 2014.

W. Ni, J. Qiao, S. Hu, X. Zhao, M. Regouski et al., Efficient gene knockout in goats using CRISPR/ Cas9 system, PloS one, vol.9, issue.9, p.25188313, 2014.
DOI : 10.1371/journal.pone.0106718

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0106718&type=printable

Z. He, C. Proudfoot, A. J. Mileham, D. G. Mclaren, C. Whitelaw et al., Highly efficient targeted chromosome deletions using CRISPR/Cas9, Biotechnol Bioeng, vol.112, issue.5, p.25362885, 2015.
DOI : 10.1002/bit.25490

W. Tan, D. F. Carlson, C. A. Lancto, J. R. Garbe, D. A. Webster et al., Efficient nonmeiotic allele introgression in livestock using custom endonucleases, PNAS, vol.110, issue.41, p.24014591, 2013.
DOI : 10.1073/pnas.1310478110

URL : http://www.pnas.org/content/110/41/16526.full.pdf

T. Hai, F. Teng, R. Guo, W. Li, and Q. Zhou, One-step generation of knockout pigs by zygote injection of CRISPR/Cas system, Cell research, vol.24, issue.3, pp.372-377, 2014.

H. Han, Y. Ma, T. Wang, L. Lian, X. Tian et al., One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system, Front Agr Sci Eng, vol.1, issue.1, pp.2-5, 2014.

. Fao, How to Feed the World in 2050

S. Lee, Regulation of muscle mass by myostatin, Annu Rev Cell Dev Biol, vol.20, p.15473835, 2004.
DOI : 10.1146/annurev.cellbio.20.012103.135836

A. C. Mcpherron, A. M. Lawler, and S. Lee, Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member, Nature, vol.387, issue.6628, p.9139826, 1997.

L. Grobet, R. Martin, L. J. Poncelet, D. Pirottin, D. Brouwers et al., A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle, Nat Genet, vol.17, issue.1, p.9288100, 1997.

P. L. Johnson, J. C. Mcewan, K. G. Dodds, R. W. Purchas, and H. T. Blair, Meat quality traits were unaffected by a quantitative trait locus affecting leg composition traits in Texel sheep, J Anim Sci, vol.83, issue.12, p.16282610, 2005.
DOI : 10.2527/2005.83122729x

N. K. Lebrasseur, T. M. Schelhorn, B. L. Bernardo, P. G. Cosgrove, P. M. Loria et al., Myostatin inhibition enhances the effects of exercise on performance and metabolic outcomes in aged mice, J Gerontol A Biol Sci Med Sci, vol.64, issue.9, pp.940-948, 2009.

L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, issue.6121, pp.819-842, 2013.
DOI : 10.1126/science.1231143

URL : http://europepmc.org/articles/pmc3795411?pdf=render

D. Vilette, M. F. Madelaine, and H. Laude, Establishment of astrocyte cell lines from sheep genetically susceptible to scrapie, In Vitro Cell Dev Biol Anim, vol.36, issue.1, p.10691040, 2000.

S. Ménoret, S. Remy, L. Tesson, C. Usal, A. Iscache et al., Generation of Transgenic Rats Using Microinjection of Plasmid DNA or Lentiviral Vectors, Advanced Protocols for Animal Transgenesis. An ISTT Manual, pp.117-153, 2011.

J. Bellec, M. Bacchetta, D. Losa, M. Anegon, T. Chanson et al., CFTR Inactivation by lentiviral vector-mediated RNA Interference and CRISPR-Cas9 genome editing in human airway epithelial cells, Current gene therapy, 2015.
DOI : 10.2174/1566523215666150812115939

P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., RNA-Guided Human Genome Engineering via Cas9, Science, vol.339, issue.6121, pp.823-829, 2013.
DOI : 10.1126/science.1232033

URL : http://europepmc.org/articles/pmc3712628?pdf=render

D. Stringfellow and M. Givens, Manual of the International Embryo Transfer Society, 2010.

A. Menchaca and E. Rubianes, New treatments associated with timed artificial insemination in small ruminants, Reprod Fertil Dev, vol.16, issue.4, p.15315739, 2004.

S. Remy, L. Tesson, S. Menoret, C. Usal, A. De-cian et al., Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases, Genome Res, vol.24, issue.8, p.24989021, 2014.

E. Wagner and J. Lykke-andersen, mRNA surveillance: the perfect persist, J Cell Sci, vol.115, issue.15, pp.3033-3041, 2002.

F. E. Haynes, G. Pl, M. Mcdonagh, C. Mcmahon, G. Nicholas et al., Lack of association between allelic status and myostatin content in lambs with the myostatin g+6723G>A allele, J Anim Sci, vol.91, issue.1, pp.78-89, 2013.

B. Petersen and H. Niemann, Molecular scissors and their application in genetically modified farm animals, Trans Research, vol.24, issue.3, pp.381-96, 2015.

A. V. Makarevich, P. Chrenek, N. Zilka, J. Pivko, and J. Bulla, Preimplantation development and viability of in vitro cultured rabbit embryos derived from in vivo fertilized gene-microinjected eggs: apoptosis and ultrastructure analyses, Zygote, vol.13, issue.2, p.16128408, 2005.

J. H. Liu, S. Yin, B. Xiong, Y. Hou, D. Y. Chen et al., Aberrant DNA methylation imprints in aborted bovine clones, Mol Reprod Dev, vol.75, issue.4, p.17886268, 2008.

H. Niemann, X. C. Tian, W. A. King, and R. Lee, Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning, Reprod, vol.135, issue.2, pp.151-63, 2008.

H. Niemann and W. A. Kues, Transgenic farm animals: an update, Reprod Fertil Dev, vol.19, issue.6, p.17714630, 2007.

C. Long, J. R. Mcanally, J. M. Shelton, A. A. Mireault, R. Bassel-duby et al., Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA, Science, vol.345, issue.6201, p.25123483, 2014.

T. Larcher, A. Lafoux, L. Tesson, R. S. Thepenier, V. Francois et al., Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy, PloS one, vol.9, issue.10, p.25310701, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190124

Y. Fu, J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nature biotechnology, vol.31, issue.9, pp.822-828, 2013.

Y. Niu, B. Shen, Y. Cui, Y. Chen, J. Wang et al., Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos, Cell, vol.156, issue.4, pp.836-879, 2014.

F. A. Ran, P. D. Hsu, C. Y. Lin, J. S. Gootenberg, S. Konermann et al., Double nicking by RNAguided CRISPR Cas9 for enhanced genome editing specificity, Cell, vol.154, issue.6, p.23992846, 2013.

Y. Fu, J. D. Sander, D. Reyon, V. M. Cascio, and J. K. Joung, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat Biotech, vol.32, issue.3, pp.279-84, 2014.

C. Proudfoot, D. Carlson, R. Huddart, C. Long, J. Pryor et al., Genome edited sheep and cattle. Trans Research, vol.2014, issue.1, pp.147-53

C. Zhang, L. Wang, G. Ren, Z. Li, C. Ren et al., Targeted disruption of the sheep MSTN gene by engineered zinc-finger nucleases, Mol Biol Rep, vol.41, issue.1, pp.209-224, 2014.

P. Wiener, J. A. Woolliams, A. Frank-lawale, M. Ryan, R. I. Richardson et al., The effects of a mutation in the myostatin gene on meat and carcass quality, Meat Science, vol.83, issue.1, pp.127-161, 2009.

L. O. Fiems, Double Muscling in Cattle: Genes, Husbandry, Carcasses and Meat, Animals, vol.2, issue.3, pp.472-506, 2012.

L. Grobet, L. Martin, D. Poncelet, D. Pirottin, B. Brouwers et al., A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle, Nat Genet, vol.17, issue.1, p.9288100, 1997.

A. Clop, F. Marcq, H. Takeda, D. Pirottin, X. Tordoir et al., A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep, Nat Genet, vol.38, issue.7, p.16751773, 2006.

C. Zhang, Y. Liu, D. Xu, Q. Wen, X. Li et al., Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance, Mol Biol Rep, vol.39, issue.3, pp.3081-3088, 2012.