Abnormal fMRI response in sub-hippocampal structures in AD: how prior knowledge impairs memory
Pierre-Yves Jonin, Quentin Duché, Elise Bannier, Isabelle Corouge, Jean-Christophe Ferré, Serge Belliard, Emmanuel Barbeau, Christian Barillot

To cite this version:

HAL Id: inserm-02148326
https://www.hal.inserm.fr/inserm-02148326
Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abnormal fMRI response in sub-hippocampal structures in AD: how prior knowledge impairs memory

Pierre-Yves Jonin1,2, Quentin Duchê2, Elise Bannier2, Isabelle Corouge2, Jean-Christophe Ferré2,3, Serge Belliard3,4, Emmanuel Barbeau1, Christian Barillot2

1Brain and Cognition Research Center, CNRS UMR 5549, Toulouse, France – 2Inria, Empenn ERL U1228, Rennes, France – 3Neurology Department, Pontchaillou University Hospital, Rennes, France – 4Neuropsychology and Imaging of Human Memory Research Unit, INSEM U1077, Caen University Hospital, Caen, France

@quentin.duch@inria.fr
@pierreyves.jonin@chu-rennes.fr

INTRODUCTION

- An impairment of associative memory (item + context memory) is a core feature of prodromal Alzheimer’s Disease (AD). Typically, associative memory is assessed with unfamiliar stimuli (e.g., isolated words) within unfamiliar environments. Yet, patients’ complaints refer to memory losses for familiar stimuli within daily routine, namely stimuli carrying prior knowledge.
- Surprisingly though, whether prior knowledge impacts memory performance and the underlying brain networks at encoding is unknown.
- By overlooking Prior Knowledge contribution to learning, we might underestimate the earliest memory impairments in AD.

MATERIAL & METHODS

- Subjects
 - N = 19
 - Group: Healthy controls (Healthy controls), AD-MCI (AD-MCI)
 - Gender: Women (9), Men (10)
 - Age: 61-75
 - 15' & 45'

RESULTS

- Prior knowledge x Repetition
 - Does prior knowledge modulate face-scene encoding networks?
 - Subsequent memory analysis in clusters derived from prior knowledge x Repetition x Group
 - Right hippocampal activity predicts associative memory for EK trials in both groups

CONCLUSION

- Prior knowledge has a massive impact on learning performance and neural encoding networks.
- In the earliest stages of AD, associative learning is particularly impaired for pre-experimental Knowledge stimuli.
- The kind of Prior Knowledge available at encoding dissociates the neural underpinnings of memory formation.
- The perirhinal cortex, that undergoes early tau pathology in AD, is involved in pre-experimental knowledge-based encoding.

By overlooking Prior Knowledge contribution to learning, we might underestimate the earliest memory impairments in AD.

REFERENCES

Perspectives for a new biomarker of AD.